
PSP VFPU instruction set
documentation

Introduction

This document describes how the PSP VFPU instruction set operates. We attempted to

collect all the knowledge available in the community and put it toghether in a document

that can be used as a reference for developers and enthusiasts.

The goal is to describe the behaviour of the hardware unit with as much detail as

possible in a way that every statement can be verified. For this reason, every functional

detail described in the docs must have a test that validates it. Of course some things are

harder to validate (like hardware bugs) so there's some statements that won't have tests

for them at this time.

MIPS allegrex CPU

The Allegrex CPU is a MIPS CPU based on the MIPS II architecture. This is a 32 bit

CPU and architecture that has many similarities with other CPUs of the same

architecture. However, if we only focus on the instruction set, the main differences with

other CPUs in the MIPS II family would be:

Lack of 64 bit FPU support (only single float support).

Lack of MMU/TLB (only certain memory protections are available).

Some extra MIPS32r2 instructions (mostly arithmetic and bit manipulation).

Other COP0 instructions, some borrowed from MIPS32

Lack of Coprocessor 3 and custom Coprocessor 2 (VFPU)

Most of the extra instructions that are present in the CPU are identical to their MIPS32

counterparts. In some cases though, the encoding is slightly different.

VFPU unit

The PSP VFPU is a coprocessor unit that can perform vector/matrix float and integer

operations on a set of 128 bit registers. It features dedicated units to perform the most

usual operations that 3D videogames require.

Register set

The CPU features 128 registers, each of them 32 bit wide. Most of the time they are

interpreted as IEEE-754 compliant floating point registers, although some instructions

will interpret them as integers (or other formats such as 8/16 bit packed integers). The

registers can be addressed individually but also in a more powerful way by grouping

them as vectors or matrices.

Registers will usually be represented in their matrix layout. The VFPU has 8 matrices,

each of them containing 16 elements (4 rows by 4 columns). For each of the 8 total

available matrices, the elements are arranged in the following fashion (X represents the

matrix number, 0 to 7):

•

•

•

•

•

Single 32 bit elements

SX00 SX10 SX20 SX30

SX01 SX11 SX21 SX31

SX02 SX12 SX22 SX32

SX03 SX13 SX23 SX33

When the registers are referenced as vectors, they are grouped as rows and columns of

a given matrix. This is important since it means that a vector is composed of elements

from a single matrix and cannot access elements across multiple matrices. There's 2D,

3D and 4D vectors, usually called pair, trio and quad respectively. Single elements can

be viewed as 1D vectors, and most instructions are available in all four possible vector

sizes (which makes the instruction set very uniform). Not all access patterns are

possible: pair and trio registers have 128 possible addressing modes while quad has

only 64. The available patterns are described as follows:

2D vector rows

RX00 RX20

RX01 RX21

RX02 RX22

RX03 RX23

3D vector rows

RX00

RX01

RX02

RX03

3D vector rows

RX10

RX11

RX12

RX13

4D vector rows

RX00

RX01

RX02

RX03

2D vector cols

CX00 CX10 CX20 CX30

CX02 CX12 CX22 CX32

3D vector cols

CX00 CX10 CX20 CX30

3D vector cols

CX01 CX11 CX21 CX31

4D vector cols

CX00 CX10 CX20 CX30

Matrix addressing is similar to vectors: registers can be read vertically or horizontally.

That means matrices can be accessed in a row major and column major mode (ie. by

accessing them as a set of rows or columns). Similarly there's three possible sizes: 2x2,

3x3 and 4x4, containing 4, 9 and 16 registers respectively. Again not all addressing

patterns are available, having 64 possible addressing modes for 2x2 and 3x3 matrices,

but only 16 for 4x4 matrices. These are:

2D matrix

MX00 MX20

MX02 MX22

3D matrix

MX00

3D matrix

MX10

3D matrix

MX01

3D matrix

MX11

4D matrix

MX00

There's also a small set of eight "control" registers that are used for a variety of things,

such as prefix state, comparison flag bits, etc. These registers are defined as follow:

Reg 128 (VFPU_PFXS): holds the rs prefix value.

Reg 129 (VFPU_PFXT): holds the rt prefix value.

Reg 130 (VFPU_PFXD): holds the rd prefix value.

Reg 131 (VFPU_CC): holds the condition code value.

Reg 135 (VFPU_REV): read only register with VFPU revision information.

Regs 136 to 147 (VFPU_RCX0 to VFPU_RCX7): Pseudorandom generator state.

Some of these registers are never accessed directly but rather using some VFPU

instructions (ie. prefixes, condition code, etc). However these can be read and written in

some useful cases, for instance thread context saving and restoration (so that the VFPU

state is preserved across thread rescheduling).

Register hazards

Most CPUs have what's called "hazard detection logic", which tracks register reads and

writes so that things happen in the right order and results actually make sense. In the

VFPU this is also the case, however some operations are quite complex and can be

complex to track.

Control registers seem to have some hazards, for instance "mfvc" instruction has a one

cycle hazard with any previous vcmp instruction. That means a vnop or some other

VFPU instruction should be inserted between a vcmp and mfvc instruction pair to get the

right VFPU_CC value.

Some VFPU instructions (mostly dealing with matrices and transformations) require that

the input and output registers do not overlap. This has to do with how the hardware

performs the operations internally: the VFPU can perform most vector-vector operations

in a native way, but matrix operations seem to be decomposed into series of vector-

vector operations (ie. a vmmul seems to be a sequence of vtfm operations). Since the

•

•

•

•

•

•

results are only partial, the inputs are overwritten before the CPU can even read them,

causing incorrect results for the operation.

The affected instructions are divided in two groups, a group that does not allow any sort

of overlap, and another group that allows some limited overlap. Instructions vmmul,

vtfm2/3/4, vhtfm2/3/4, vqmul and vcrsp do not allow any sort of overlap between input

and output registers. These instructions perform operations by repeating a dot product

operation multiple times, which results in partial updates of the output register. This

partial updates overwrite the input register causing the result to be incorrect.

Instructions that allow partial overlaps are vsin, vcos, vasin, vnsin, vexp2, vrexp2, vlog2,

vsqrt, vrsq, vrcp, vnrcp, vdiv, vmscl and vmmov. Single versions (.s) are not affected by

this restriction. These instructions are also internally decomposed into a bunch of

smaller operations (for instance trigonometric operations are decomposed into a series

of single (.s) operations). The registers are allowed to overlap as long as they are

compatible in terms of element count and access "direction" (ie. a matrix must be read

using the same mode).

Examples

 vmscl.p M000, M022, S100 # No overlap, always OK

 vmscl.p M000, M000, S100 # M000 overlaps with itself, OK

 vmscl.p M000, E000, S100 # Invalid overlap, matrix order is different

 vmscl.t M000, M011, S100 # Overlapping registers are not identical

 vcos.q R000, C000 # Invalid overlap (one element only)

 vcos.q R000, R000 # Identical overlap, OK

Floating point format

Although the FPU seems IEEE-754 compliant, it has a couple of non-standard features

that break this compatibility. Its rounding mode is hardwired to "round to nearest" mode,

so that users cannot choose another rounding mode. It also lacks support for denormal

numbers (also called subnormals): when an operation produces a subnormal number, it

rounds it to zero. If the input of an operation is a denormal number, it will also be treated

as zero.

See the ieee754-fun.c file for tests.

Instruction execution

The VFPU is a pipelined CPU with an issue width of one. That means that instructions

take multiple cycles to execute, since they execute partially during each cycle, and a

maximum of one new instruction begins execution each cycle. Instructions that block the

pipeline for more than one cycle can be identified by having a throughput different than

one. These block the pipeline for a certain number of cycles before a new instruction can

enter it.

An instruction usually begins executing whenever its input registers are ready, that is,

any previous instruction writing those registers have fully completed their execution. For

this reason it is important to closely observe the instruction latency, measured in cycles,

since an instruction might have to wait for its inputs to become available, reducing

efficiency. A common strategy is to interleave non-dependant instructions to hide latency

and avoid wasting CPU cycles.

The pipeline structure looks more or less as follows:

Register read

Input prefix operations

VFPU operation (arithmetic, logic)

Output prefix operation

Register write

Prefix operations allow to perform certain operations on the inputs before the actual

instruction operation and some other operations on the output.

Prefix operations

VFPU operations can operate on one or two inputs (rs and rt) and one output (rd). The

input values can be pre-processed by using the VFPU_PFXS and VFPU_PFXT registers (and

therefore vpfxs and vpfxt instructions). The result of the operation being written to rd can

be post-processed by using the VFPU_PFXD register (vpfxd instruction).

Valid operations for input registers are:

Sign change (negation)

Absolute value

Swizzle (rearranging elments in a row/col)

Override element with constant value.

Operations available to the output register post-processing are:

Value clamping (to ranges 0..1 or -1..1)

Write masking (disable register write)

There's some restrictions on their usage. The assembler will signal an error should you

violate any of the restrictions.

Constant values can only be 0, 1, 2, 3, 1/2, 1/3, 1/4, 1/6 or any of their negative

counterparts

Swizzle cannot extend beyond the operand size (ie. you cannot use .z with a an

instruction that uses single or pair elements).

A few examples to showcase input prefixes:

 # Sign change prefix

 vmul.p R000, R001, R002[-x,-y] # Multiplies two rows negating one of the inputs

 # S000 = S001 * -S002; S010 = S011 * -S012

 vfad.q R000, R001[x,-y,z,-w] # Funnel-add all elements with some changed signs

 # S000 = S001 - S011 + S021 - S031

 # Absolute value prefix

 vdot.p S000, R001[|x|,|y|], R002 # Dot product with forced absolute value for R001

 # S000 = |S001| * S002 + |S011| * S012

•

•

•

•

•

•

•

•

•

•

•

•

•

 # Negative and absolute value prefixes

 vdot.p S000, R001[-|x|,-|y|], R002 # Dot product with forced negative values

 # S000 = -|S001| * S002 - |S011| * S012

 # Swizzle prefix

 vdot.q R000, R001, R002[x,y,x,y] # Multiplies with repeating values

 # S000 = S001 * S002; S010 = S011 * S012

 # S020 = S021 * S002; S030 = S031 * S012

 # Constant value prefixes

 vdot.t R000, R001, R002[1,2,3] # Second operand ignored, overrides to (1,2,3)

 # S000 = S001 + S011 * 2 + S021 * 3

 vdot.t R000, R001, R002[x,-2,-y] # Mix swizzle and constant elements

 # S000 = S001 * S002 - S011 * 2 - S021 * S012

Some more examples for output prefixes.

 vmul.p R000[[-1:1],[-1:1]], R001, R002 # Multiplies with output saturation

 # S000 = min(1.0f, max(-1.0f, S001 * S002))

 # S010 = min(1.0f, max(-1.0f, S011 * S012))

Adding a prefix modifier to an operand will result in vpfxs/t/d instructions being emitted

before the actual instruction. This syntax exists just to make assembly coding more

comfortable to the user. When using the disassembler the prefix instructions will be

clearly visible.

 # The following operand-decorated instruction:

 vmul.q R000, R100[x,y,x,y], R200[-x,-y,z,w]

 # is actually encoded as a sequence of instructions:

 vpfxs [x,y,x,y]

 vpfxt [-x,-y,z,w]

 vmul.q R000, R100, R200

Prefix instructions consume one cycle and have no visible latency (the "decorated"

instruction doesn't have to wait any extra cycles). In some cases it might be faster to not

use prefixes and use other instructions (vcst, vabs, vneg, vsat0/1 are some similar

alternatives), particularly when optimizing for throughput. The advantage of using

prefixes is that latency is kept low (since they have no latency and the extra operation is

"included" in the instruction pipeline).

Allegrex Instructions

Bit manipulation instructions

The following instructions exist in the Allegrex CPU and share the same MIPS32

encodings:

seb: Sign extend byte (byte to word signed extension)

seh: Sign extend half-word (half-word to word signed extension)

ext: Extract bit field (extract a bit field in a zeroed register)

ins: Insert bit field (insert lower bits into another register)

wsbh: Swap bytes within a half-word

Other instructions that are borrowed from MIPS32 but have a different encoding are:

clo: Count leading ones (uses some unused SPECIAL encodings)

clz: Count leading zeros (uses some unused SPECIAL encodings)

The bit manipulation Allegrex specific instructions are:

wsbw: Swap bytes in word (uses BSHFL encoding adjacent to wsbh)

bitrev: Reverse bits in a word (uses unused BSHFL encoding)

Arithmetic-Logical instructions

Allegrex features some instructions present in MIPS32 and MIPS32r2 with identical

encoding to these:

rotr: Rotate word right by a fixed amount

rotrv: Rotate word right by a variable amount

movz: Conditional register move on zero

movn: Conditional register move on non-zero

Other instructions that have some particular encoding are multiply-accumulate

instructions. Some overlap with MIPS R4010 encodings and some others just use unused

encodings. They all use unused SPECIAL opcodes:

madd: Signed multiply-accumulate integer

maddu: Unsigned multiply-accumulate integer

msub: Signed multiply-subtract integer

msubu: Unsigned multiply-subtract integer

There's also two novel Allegrex instructions that are used to perform faster compare-

and-move operations. These use free SPECIAL opcodes as well:

min: Selects smallest (signed) value between two registers.

max: Selects greatest (signed) value between two registers.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

VFPU branch on falsebvf

012345678910111213141516171819202122232425262728293031

0 1 0 0 1 0 0 1 0 0 0 0 0vfpucc offset

Syntax

bvf imm3, offset

Description

Branch on VFPU CC register being false

Instruction performance

Throughput: 1 cycles/instruction

Latency: 4 cycles

VFPU likely branch on falsebvfl

012345678910111213141516171819202122232425262728293031

0 1 0 0 1 0 0 1 0 0 0 1 0vfpucc offset

Syntax

bvfl imm3, offset

Description

Branch on VFPU CC register being false (likely)

Instruction performance

Throughput: 1 cycles/instruction

Latency: 4 cycles

VFPU branch on truebvt

012345678910111213141516171819202122232425262728293031

0 1 0 0 1 0 0 1 0 0 0 0 1vfpucc offset

Syntax

bvt imm3, offset

Description

Branch on VFPU CC register being true

Instruction performance

Throughput: 1 cycles/instruction

Latency: 4 cycles

VFPU likely branch on truebvtl

012345678910111213141516171819202122232425262728293031

0 1 0 0 1 0 0 1 0 0 0 1 1vfpucc offset

Syntax

bvtl imm3, offset

Description

Branch on VFPU CC register being true (likely)

Instruction performance

Throughput: 1 cycles/instruction

Latency: 4 cycles

Move GPR to VFPU control registermtvc

012345678910111213141516171819202122232425262728293031

0 1 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0gpr vfpucc

Syntax

mtvc rt, imm8

Description

Writes the contents of a CPU general purpose register to the specified VFPU control

register

Move VFPU control register to GPRmfvc

012345678910111213141516171819202122232425262728293031

0 1 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0gpr vfpucc

Syntax

mfvc rt, imm8

Description

Writes the contents of the specified VPFU control register into a CPU general purpose

register

Hazards

The instruction does not have interlocks, so the result of a vcmp instruction is only

available one cycle later. You will need to interleave at least one VFPU instruction

between a vcmp and mfvc (ie. a vnop).

Move vector register to VFPU control registervmtvc

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 rs vfpucc

Syntax

vmtvc imm8, rs

Description

Writes the contents of a VFPU vector general to the specified VFPU control register

Move VFPU control register to vector registervmfvc

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 rdvfpucc

Syntax

vmfvc rd, imm8

Description

Writes the contents of the specified VPFU control register into a VFPU vector register

Hazards

The instruction does not have interlocks, so the result of a previous vcmp instruction is

only available one cycle later. You will need to interleave at least one VFPU instruction

between a vcmp and mfvc (ie. a vnop).

Load VFPU elementlv.s

012345678910111213141516171819202122232425262728293031

1 1 0 0 1 0 gpr rtlo rthioffset

Syntax

lv.s rd, imm14(rt)

Description

Performs a 4 byte memory load to a VFPU register. Address must be 4 byte aligned or a

fault is generated.

Allowed prefixes

rd: Not supported•

Load VFPU quad elementlv.q

012345678910111213141516171819202122232425262728293031

1 1 0 1 1 0 0gpr rtlo rthioffset

Syntax

lv.q rd, imm14(rt)

Description

Performs a 16 byte memory load to a VFPU quad register. Address must be 16 byte

aligned or a fault is generated.

Allowed prefixes

rd: Not supported•

Load left VFPU quad elementlvl.q

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 1 0gpr rtlo rthioffset

Syntax

lvl.q rd, imm14(rt)

Description

Performs a 16 byte left unaligned memory load to a VFPU quad register. Instruction

ignores the two LSB (forces them to zero), so the address is assumed aligned to 4

bytes. This instruction is similar to MIPS LWL instruction: loads the most significant

elements from the specified address leaving the other elements unchanged. Users can

use `ulv.q` pseudoinstruction to generate a sequence of `lvl.q` and `lvr.q` instructions in

order to load unaligned data. You can check `psp-tests/manual/memops.c` to see

examples on how the instruction behaves.

Bugs

The instruction has an errata on PSP-1000 models that causes FPU register corruption

(these are the MIPS CPU FPU registers, not the VFPU registers). The bottom 5 bits of

the VFPU destination register determine which FPU register will be corrupted. A

workaround is to assume the side effect (ie. mark the register are clobbered).

Allowed prefixes

rd: Not supported•

Load right VFPU quad elementlvr.q

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 1 1gpr rtlo rthioffset

Syntax

lvr.q rd, imm14(rt)

Description

Performs a 16 byte right unaligned memory load to a VFPU quad register. Instruction

ignores the two LSB (forces them to zero), so the address is assumed aligned to 4

bytes. This instruction is similar to MIPS LWR instruction: loads the least significant

elements from the specified address leaving the other elements unchanged. Users can

use `ulv.q` pseudoinstruction to generate a sequence of `lvl.q` and `lvr.q` instructions in

order to load unaligned data. You can check `psp-tests/manual/memops.c` to see

examples on how the instruction behaves.

Bugs

The instruction has an errata on PSP-1000 models that causes FPU register corruption

(these are the MIPS CPU FPU registers, not the VFPU registers). The bottom 5 bits of

the VFPU destination register determine which FPU register will be corrupted. A

workaround is to assume the side effect (ie. mark the register are clobbered).

Allowed prefixes

rd: Not supported•

Store VFPU elementsv.s

012345678910111213141516171819202122232425262728293031

1 1 1 0 1 0 gpr rtlo rthioffset

Syntax

sv.s rs, imm14(rt)

Description

Performs a 4 byte memory store from a VFPU register. Address must be 4 byte aligned

or a fault is generated.

Allowed prefixes

rd: Not supported•

Store VFPU quad elementsv.q

012345678910111213141516171819202122232425262728293031

1 1 1 1 1 0 0gpr rtlo rthioffset

Syntax

sv.q rs, imm14(rt)

Description

Performs a 16 byte memory store from a VFPU quad register. Address must be 16 byte

aligned or a fault is generated.

Allowed prefixes

rd: Not supported•

Store left VFPU quad elementsvl.q

012345678910111213141516171819202122232425262728293031

1 1 1 1 0 1 0gpr rtlo rthioffset

Syntax

svl.q rs, imm14(rt)

Description

Performs a 16 byte left unaligned memory store from a VFPU quad register. Instruction

ignores the two address LSB (forces them to zero), so the address is assumed aligned

to 4 bytes. This instruction is similar to MIPS SWL instruction: stores the most significant

part of the elements to the specified address leaving any other elements unchanged.

Users can use `usv.q` pseudoinstruction to generate a sequence of `svl.q` and `svr.q`

instructions in order to store unaligned data. You can check `psp-tests/manual/

memops.c` to see examples on how the instruction behaves.

Allowed prefixes

rd: Not supported•

Store right VFPU quad elementsvr.q

012345678910111213141516171819202122232425262728293031

1 1 1 1 0 1 1gpr rtlo rthioffset

Syntax

svr.q rs, imm14(rt)

Description

Performs a 16 byte right unaligned memory store from a VFPU quad register. Instruction

ignores the two address LSB (forces them to zero), so the address is assumed aligned

to 4 bytes. This instruction is similar to MIPS SWR instruction: stores the least significant

part of the elements to the specified address leaving any other elements unchanged.

Users can use `usv.q` pseudoinstruction to generate a sequence of `svl.q` and `svr.q`

instructions in order to store unaligned data. You can check `psp-tests/manual/

memops.c` to see examples on how the instruction behaves.

Allowed prefixes

rd: Not supported•

Add elementsvadd.s

012345678910111213141516171819202122232425262728293031

0 1 1 0 0 0 0 0 0 0 0rt rs rd

Syntax

vadd.s rd, rs, rt

Description

Performs element-wise floating point addition

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rt: Full support (swizzle, abs(), neg() and constants)

rd: Full support (masking and saturation)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = rs[0] + rt[0]

•

•

•

Add elementsvadd.p

012345678910111213141516171819202122232425262728293031

0 1 1 0 0 0 0 0 0 0 1rt rs rd

Syntax

vadd.p rd, rs, rt

Description

Performs element-wise floating point addition

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rt: Full support (swizzle, abs(), neg() and constants)

rd: Full support (masking and saturation)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = rs[0] + rt[0]

rd[1] = rs[1] + rt[1]

•

•

•

Add elementsvadd.t

012345678910111213141516171819202122232425262728293031

0 1 1 0 0 0 0 0 0 1 0rt rs rd

Syntax

vadd.t rd, rs, rt

Description

Performs element-wise floating point addition

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rt: Full support (swizzle, abs(), neg() and constants)

rd: Full support (masking and saturation)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = rs[0] + rt[0]

rd[1] = rs[1] + rt[1]

rd[2] = rs[2] + rt[2]

•

•

•

Add elementsvadd.q

012345678910111213141516171819202122232425262728293031

0 1 1 0 0 0 0 0 0 1 1rt rs rd

Syntax

vadd.q rd, rs, rt

Description

Performs element-wise floating point addition

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rt: Full support (swizzle, abs(), neg() and constants)

rd: Full support (masking and saturation)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = rs[0] + rt[0]

rd[1] = rs[1] + rt[1]

rd[2] = rs[2] + rt[2]

rd[3] = rs[3] + rt[3]

•

•

•

Subtract elementsvsub.s

012345678910111213141516171819202122232425262728293031

0 1 1 0 0 0 0 0 1 0 0rt rs rd

Syntax

vsub.s rd, rs, rt

Description

Performs element-wise floating point subtraction

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rt: Full support (swizzle, abs(), neg() and constants)

rd: Full support (masking and saturation)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = rs[0] - rt[0]

•

•

•

Subtract elementsvsub.p

012345678910111213141516171819202122232425262728293031

0 1 1 0 0 0 0 0 1 0 1rt rs rd

Syntax

vsub.p rd, rs, rt

Description

Performs element-wise floating point subtraction

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rt: Full support (swizzle, abs(), neg() and constants)

rd: Full support (masking and saturation)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = rs[0] - rt[0]

rd[1] = rs[1] - rt[1]

•

•

•

Subtract elementsvsub.t

012345678910111213141516171819202122232425262728293031

0 1 1 0 0 0 0 0 1 1 0rt rs rd

Syntax

vsub.t rd, rs, rt

Description

Performs element-wise floating point subtraction

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rt: Full support (swizzle, abs(), neg() and constants)

rd: Full support (masking and saturation)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = rs[0] - rt[0]

rd[1] = rs[1] - rt[1]

rd[2] = rs[2] - rt[2]

•

•

•

Subtract elementsvsub.q

012345678910111213141516171819202122232425262728293031

0 1 1 0 0 0 0 0 1 1 1rt rs rd

Syntax

vsub.q rd, rs, rt

Description

Performs element-wise floating point subtraction

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rt: Full support (swizzle, abs(), neg() and constants)

rd: Full support (masking and saturation)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = rs[0] - rt[0]

rd[1] = rs[1] - rt[1]

rd[2] = rs[2] - rt[2]

rd[3] = rs[3] - rt[3]

•

•

•

Multiply elementsvmul.s

012345678910111213141516171819202122232425262728293031

0 1 1 0 0 1 0 0 0 0 0rt rs rd

Syntax

vmul.s rd, rs, rt

Description

Performs element-wise floating point multiplication

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rt: Full support (swizzle, abs(), neg() and constants)

rd: Full support (masking and saturation)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = rs[0] * rt[0]

•

•

•

Multiply elementsvmul.p

012345678910111213141516171819202122232425262728293031

0 1 1 0 0 1 0 0 0 0 1rt rs rd

Syntax

vmul.p rd, rs, rt

Description

Performs element-wise floating point multiplication

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rt: Full support (swizzle, abs(), neg() and constants)

rd: Full support (masking and saturation)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = rs[0] * rt[0]

rd[1] = rs[1] * rt[1]

•

•

•

Multiply elementsvmul.t

012345678910111213141516171819202122232425262728293031

0 1 1 0 0 1 0 0 0 1 0rt rs rd

Syntax

vmul.t rd, rs, rt

Description

Performs element-wise floating point multiplication

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rt: Full support (swizzle, abs(), neg() and constants)

rd: Full support (masking and saturation)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = rs[0] * rt[0]

rd[1] = rs[1] * rt[1]

rd[2] = rs[2] * rt[2]

•

•

•

Multiply elementsvmul.q

012345678910111213141516171819202122232425262728293031

0 1 1 0 0 1 0 0 0 1 1rt rs rd

Syntax

vmul.q rd, rs, rt

Description

Performs element-wise floating point multiplication

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rt: Full support (swizzle, abs(), neg() and constants)

rd: Full support (masking and saturation)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = rs[0] * rt[0]

rd[1] = rs[1] * rt[1]

rd[2] = rs[2] * rt[2]

rd[3] = rs[3] * rt[3]

•

•

•

Divide elementsvdiv.s

012345678910111213141516171819202122232425262728293031

0 1 1 0 0 0 1 1 1 0 0rt rs rd

Syntax

vdiv.s rd, rs, rt

Description

Performs element-wise floating point division

Instruction performance

Throughput: 14 cycles/instruction

Latency: 17 cycles

Register overlap compatibility

Output register can only overlap with input registers if they are identical

Allowed prefixes

rs: Full support (swizzle, abs(), neg() and constants)

rt: Full support (swizzle, abs(), neg() and constants)

rd: Full support (masking and saturation)

Pseudocode

rd[0] = rs[0] / rt[0]

•

•

•

Divide elementsvdiv.p

012345678910111213141516171819202122232425262728293031

0 1 1 0 0 0 1 1 1 0 1rt rs rd

Syntax

vdiv.p rd, rs, rt

Description

Performs element-wise floating point division

Instruction performance

Throughput: 28 cycles/instruction

Latency: 31 cycles

Register overlap compatibility

Output register can only overlap with input registers if they are identical

Allowed prefixes

rs: Not supported

rd: Not supported

rt: Not supported

Pseudocode

rd[0] = rs[0] / rt[0]

rd[1] = rs[1] / rt[1]

•

•

•

Divide elementsvdiv.t

012345678910111213141516171819202122232425262728293031

0 1 1 0 0 0 1 1 1 1 0rt rs rd

Syntax

vdiv.t rd, rs, rt

Description

Performs element-wise floating point division

Instruction performance

Throughput: 42 cycles/instruction

Latency: 45 cycles

Register overlap compatibility

Output register can only overlap with input registers if they are identical

Allowed prefixes

rs: Not supported

rd: Not supported

rt: Not supported

Pseudocode

rd[0] = rs[0] / rt[0]

rd[1] = rs[1] / rt[1]

rd[2] = rs[2] / rt[2]

•

•

•

Divide elementsvdiv.q

012345678910111213141516171819202122232425262728293031

0 1 1 0 0 0 1 1 1 1 1rt rs rd

Syntax

vdiv.q rd, rs, rt

Description

Performs element-wise floating point division

Instruction performance

Throughput: 56 cycles/instruction

Latency: 59 cycles

Register overlap compatibility

Output register can only overlap with input registers if they are identical

Allowed prefixes

rs: Not supported

rd: Not supported

rt: Not supported

Pseudocode

rd[0] = rs[0] / rt[0]

rd[1] = rs[1] / rt[1]

rd[2] = rs[2] / rt[2]

rd[3] = rs[3] / rt[3]

•

•

•

Select smallest elementsvmin.s

012345678910111213141516171819202122232425262728293031

0 1 1 0 1 1 0 1 0 0 0rt rs rd

Syntax

vmin.s rd, rs, rt

Description

Performs element-wise floating point min(rs, rt) operation

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rt: Full support (swizzle, abs(), neg() and constants)

rd: Full support (masking and saturation)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = fminf(rs[0], rt[0])

•

•

•

Select smallest elementsvmin.p

012345678910111213141516171819202122232425262728293031

0 1 1 0 1 1 0 1 0 0 1rt rs rd

Syntax

vmin.p rd, rs, rt

Description

Performs element-wise floating point min(rs, rt) operation

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rt: Full support (swizzle, abs(), neg() and constants)

rd: Full support (masking and saturation)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = fminf(rs[0], rt[0])

rd[1] = fminf(rs[1], rt[1])

•

•

•

Select smallest elementsvmin.t

012345678910111213141516171819202122232425262728293031

0 1 1 0 1 1 0 1 0 1 0rt rs rd

Syntax

vmin.t rd, rs, rt

Description

Performs element-wise floating point min(rs, rt) operation

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rt: Full support (swizzle, abs(), neg() and constants)

rd: Full support (masking and saturation)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = fminf(rs[0], rt[0])

rd[1] = fminf(rs[1], rt[1])

rd[2] = fminf(rs[2], rt[2])

•

•

•

Select smallest elementsvmin.q

012345678910111213141516171819202122232425262728293031

0 1 1 0 1 1 0 1 0 1 1rt rs rd

Syntax

vmin.q rd, rs, rt

Description

Performs element-wise floating point min(rs, rt) operation

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rt: Full support (swizzle, abs(), neg() and constants)

rd: Full support (masking and saturation)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = fminf(rs[0], rt[0])

rd[1] = fminf(rs[1], rt[1])

rd[2] = fminf(rs[2], rt[2])

rd[3] = fminf(rs[3], rt[3])

•

•

•

Select biggest elementsvmax.s

012345678910111213141516171819202122232425262728293031

0 1 1 0 1 1 0 1 1 0 0rt rs rd

Syntax

vmax.s rd, rs, rt

Description

Performs element-wise floating point max(rs, rt) operation

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rt: Full support (swizzle, abs(), neg() and constants)

rd: Full support (masking and saturation)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = fmaxf(rs[0], rt[0])

•

•

•

Select biggest elementsvmax.p

012345678910111213141516171819202122232425262728293031

0 1 1 0 1 1 0 1 1 0 1rt rs rd

Syntax

vmax.p rd, rs, rt

Description

Performs element-wise floating point max(rs, rt) operation

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rt: Full support (swizzle, abs(), neg() and constants)

rd: Full support (masking and saturation)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = fmaxf(rs[0], rt[0])

rd[1] = fmaxf(rs[1], rt[1])

•

•

•

Select biggest elementsvmax.t

012345678910111213141516171819202122232425262728293031

0 1 1 0 1 1 0 1 1 1 0rt rs rd

Syntax

vmax.t rd, rs, rt

Description

Performs element-wise floating point max(rs, rt) operation

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rt: Full support (swizzle, abs(), neg() and constants)

rd: Full support (masking and saturation)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = fmaxf(rs[0], rt[0])

rd[1] = fmaxf(rs[1], rt[1])

rd[2] = fmaxf(rs[2], rt[2])

•

•

•

Select biggest elementsvmax.q

012345678910111213141516171819202122232425262728293031

0 1 1 0 1 1 0 1 1 1 1rt rs rd

Syntax

vmax.q rd, rs, rt

Description

Performs element-wise floating point max(rs, rt) operation

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rt: Full support (swizzle, abs(), neg() and constants)

rd: Full support (masking and saturation)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = fmaxf(rs[0], rt[0])

rd[1] = fmaxf(rs[1], rt[1])

rd[2] = fmaxf(rs[2], rt[2])

rd[3] = fmaxf(rs[3], rt[3])

•

•

•

Compare and set elementsvscmp.s

012345678910111213141516171819202122232425262728293031

0 1 1 0 1 1 1 0 1 0 0rt rs rd

Syntax

vscmp.s rd, rs, rt

Description

Performs element-wise floating point comparison. The result is -1.0f, 0.0f or 1.0f

depending on whether the input vs is less that vt, equal, or greater, respectively.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rt: Full support (swizzle, abs(), neg() and constants)

rd: Full support (masking and saturation)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = rs[0] < rt[0] ? -1f : rs[0] > rt[0] ? 1.0f : 0.0f

•

•

•

Compare and set elementsvscmp.p

012345678910111213141516171819202122232425262728293031

0 1 1 0 1 1 1 0 1 0 1rt rs rd

Syntax

vscmp.p rd, rs, rt

Description

Performs element-wise floating point comparison. The result is -1.0f, 0.0f or 1.0f

depending on whether the input vs is less that vt, equal, or greater, respectively.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rt: Full support (swizzle, abs(), neg() and constants)

rd: Full support (masking and saturation)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = rs[0] < rt[0] ? -1f : rs[0] > rt[0] ? 1.0f : 0.0f

rd[1] = rs[1] < rt[1] ? -1f : rs[1] > rt[1] ? 1.0f : 0.0f

•

•

•

Compare and set elementsvscmp.t

012345678910111213141516171819202122232425262728293031

0 1 1 0 1 1 1 0 1 1 0rt rs rd

Syntax

vscmp.t rd, rs, rt

Description

Performs element-wise floating point comparison. The result is -1.0f, 0.0f or 1.0f

depending on whether the input vs is less that vt, equal, or greater, respectively.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rt: Full support (swizzle, abs(), neg() and constants)

rd: Full support (masking and saturation)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = rs[0] < rt[0] ? -1f : rs[0] > rt[0] ? 1.0f : 0.0f

rd[1] = rs[1] < rt[1] ? -1f : rs[1] > rt[1] ? 1.0f : 0.0f

rd[2] = rs[2] < rt[2] ? -1f : rs[2] > rt[2] ? 1.0f : 0.0f

•

•

•

Compare and set elementsvscmp.q

012345678910111213141516171819202122232425262728293031

0 1 1 0 1 1 1 0 1 1 1rt rs rd

Syntax

vscmp.q rd, rs, rt

Description

Performs element-wise floating point comparison. The result is -1.0f, 0.0f or 1.0f

depending on whether the input vs is less that vt, equal, or greater, respectively.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rt: Full support (swizzle, abs(), neg() and constants)

rd: Full support (masking and saturation)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = rs[0] < rt[0] ? -1f : rs[0] > rt[0] ? 1.0f : 0.0f

rd[1] = rs[1] < rt[1] ? -1f : rs[1] > rt[1] ? 1.0f : 0.0f

rd[2] = rs[2] < rt[2] ? -1f : rs[2] > rt[2] ? 1.0f : 0.0f

rd[3] = rs[3] < rt[3] ? -1f : rs[3] > rt[3] ? 1.0f : 0.0f

•

•

•

Compare greater or equal and set elementsvsge.s

012345678910111213141516171819202122232425262728293031

0 1 1 0 1 1 1 1 0 0 0rt rs rd

Syntax

vsge.s rd, rs, rt

Description

Performs element-wise floating point bigger-or-equal comparison. The result will be 1.0 if

vs is bigger or equal to vt, otherwise will be zero.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rt: Full support (swizzle, abs(), neg() and constants)

rd: Full support (masking and saturation)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = rs[0] >= rt[0] ? 1.0f : 0.0f

•

•

•

Compare greater or equal and set elementsvsge.p

012345678910111213141516171819202122232425262728293031

0 1 1 0 1 1 1 1 0 0 1rt rs rd

Syntax

vsge.p rd, rs, rt

Description

Performs element-wise floating point bigger-or-equal comparison. The result will be 1.0 if

vs is bigger or equal to vt, otherwise will be zero.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rt: Full support (swizzle, abs(), neg() and constants)

rd: Full support (masking and saturation)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = rs[0] >= rt[0] ? 1.0f : 0.0f

rd[1] = rs[1] >= rt[1] ? 1.0f : 0.0f

•

•

•

Compare greater or equal and set elementsvsge.t

012345678910111213141516171819202122232425262728293031

0 1 1 0 1 1 1 1 0 1 0rt rs rd

Syntax

vsge.t rd, rs, rt

Description

Performs element-wise floating point bigger-or-equal comparison. The result will be 1.0 if

vs is bigger or equal to vt, otherwise will be zero.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rt: Full support (swizzle, abs(), neg() and constants)

rd: Full support (masking and saturation)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = rs[0] >= rt[0] ? 1.0f : 0.0f

rd[1] = rs[1] >= rt[1] ? 1.0f : 0.0f

rd[2] = rs[2] >= rt[2] ? 1.0f : 0.0f

•

•

•

Compare greater or equal and set elementsvsge.q

012345678910111213141516171819202122232425262728293031

0 1 1 0 1 1 1 1 0 1 1rt rs rd

Syntax

vsge.q rd, rs, rt

Description

Performs element-wise floating point bigger-or-equal comparison. The result will be 1.0 if

vs is bigger or equal to vt, otherwise will be zero.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rt: Full support (swizzle, abs(), neg() and constants)

rd: Full support (masking and saturation)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = rs[0] >= rt[0] ? 1.0f : 0.0f

rd[1] = rs[1] >= rt[1] ? 1.0f : 0.0f

rd[2] = rs[2] >= rt[2] ? 1.0f : 0.0f

rd[3] = rs[3] >= rt[3] ? 1.0f : 0.0f

•

•

•

Compare less-than and set elementsvslt.s

012345678910111213141516171819202122232425262728293031

0 1 1 0 1 1 1 1 1 0 0rt rs rd

Syntax

vslt.s rd, rs, rt

Description

Performs element-wise floating point less-than comparison. The result will be 1.0 if vs

less than vt, otherwise will be zero.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rt: Full support (swizzle, abs(), neg() and constants)

rd: Full support (masking and saturation)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = rs[0] < rt[0] ? 1.0f : 0.0f

•

•

•

Compare less-than and set elementsvslt.p

012345678910111213141516171819202122232425262728293031

0 1 1 0 1 1 1 1 1 0 1rt rs rd

Syntax

vslt.p rd, rs, rt

Description

Performs element-wise floating point less-than comparison. The result will be 1.0 if vs

less than vt, otherwise will be zero.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rt: Full support (swizzle, abs(), neg() and constants)

rd: Full support (masking and saturation)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = rs[0] < rt[0] ? 1.0f : 0.0f

rd[1] = rs[1] < rt[1] ? 1.0f : 0.0f

•

•

•

Compare less-than and set elementsvslt.t

012345678910111213141516171819202122232425262728293031

0 1 1 0 1 1 1 1 1 1 0rt rs rd

Syntax

vslt.t rd, rs, rt

Description

Performs element-wise floating point less-than comparison. The result will be 1.0 if vs

less than vt, otherwise will be zero.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rt: Full support (swizzle, abs(), neg() and constants)

rd: Full support (masking and saturation)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = rs[0] < rt[0] ? 1.0f : 0.0f

rd[1] = rs[1] < rt[1] ? 1.0f : 0.0f

rd[2] = rs[2] < rt[2] ? 1.0f : 0.0f

•

•

•

Compare less-than and set elementsvslt.q

012345678910111213141516171819202122232425262728293031

0 1 1 0 1 1 1 1 1 1 1rt rs rd

Syntax

vslt.q rd, rs, rt

Description

Performs element-wise floating point less-than comparison. The result will be 1.0 if vs

less than vt, otherwise will be zero.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rt: Full support (swizzle, abs(), neg() and constants)

rd: Full support (masking and saturation)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = rs[0] < rt[0] ? 1.0f : 0.0f

rd[1] = rs[1] < rt[1] ? 1.0f : 0.0f

rd[2] = rs[2] < rt[2] ? 1.0f : 0.0f

rd[3] = rs[3] < rt[3] ? 1.0f : 0.0f

•

•

•

Partial vector cross productvcrs.t

012345678910111213141516171819202122232425262728293031

0 1 1 0 0 1 1 0 1 1 0rt rs rd

Syntax

vcrs.t rd, rs, rt

Description

Performs a partial cross-product operation

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rd: Full support (masking and saturation)

rs: Not supported

rt: Not supported

Pseudocode

rd[0] = rs[1] * rt[2]

rd[1] = rs[2] * rt[0]

rd[2] = rs[0] * rt[1]

•

•

•

Vector cross productvcrsp.t

012345678910111213141516171819202122232425262728293031

1 1 1 1 0 0 1 0 1 1 0rt rs rd

Syntax

vcrsp.t rd, rs, rt

Description

Performs a full cross-product operation

Instruction performance

Throughput: 3 cycles/instruction

Latency: 9 cycles

Register overlap compatibility

Output register cannot overlap with input registers

Allowed prefixes

rs: Not supported

rd: Not supported

rt: Not supported

Pseudocode

rd[0] = rs[1] * rt[2] - rs[2] * rt[1]

rd[1] = rs[2] * rt[0] - rs[0] * rt[2]

rd[2] = rs[0] * rt[1] - rs[1] * rt[0]

•

•

•

Quaternion multiplicationvqmul.q

012345678910111213141516171819202122232425262728293031

1 1 1 1 0 0 1 0 1 1 1rt rs rd

Syntax

vqmul.q rd, rs, rt

Description

Performs a vector-matrix homogeneous transform (matrix-vector product), with a vector

result

Instruction performance

Throughput: 4 cycles/instruction

Latency: 10 cycles

Register overlap compatibility

Output register cannot overlap with input registers

Allowed prefixes

rs: Not supported

rd: Not supported

rt: Not supported

Pseudocode

rd[0] = rs[3] * rt[0] - rs[2] * rt[1] + rs[1] * rt[2] + rs[0] * rt[3]

rd[1] = rs[3] * rt[1] + rs[2] * rt[0] + rs[1] * rt[3] - rs[0] * rt[2]

rd[2] = rs[3] * rt[2] + rs[2] * rt[3] - rs[1] * rt[0] + rs[0] * rt[1]

rd[3] = rs[3] * rt[3] - rs[2] * rt[2] - rs[1] * rt[1] - rs[0] * rt[0]

•

•

•

Change exponent scalevsbn.s

012345678910111213141516171819202122232425262728293031

0 1 1 0 0 0 0 1 0 0 0rt rs rd

Syntax

vsbn.s rd, rs, rt

Description

Rescales rs operand to have rt as exponent. This would be equivalent to ldexp(frexp(rs,

NULL), rt + 128). If we express the number in its IEEE754 terms, that is, if rs can be

expressed as ±m * 2^e, the instruction will replace "e" with the value of rt + 127 mod

256.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rt: Full support (swizzle, abs(), neg() and constants)

rd: Full support (masking and saturation)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = (fpiszero(rs[0]) || fpisnanorinf(rs[0])) ? rs[0] : (rs[0] & 0x807FFFFF) |

(((rt[0] + 127) & 0xFF) << 23)

•

•

•

Vector scalar scalevscl.p

012345678910111213141516171819202122232425262728293031

0 1 1 0 0 1 0 1 0 0 1rt rs rd

Syntax

vscl.p rd, rs, rt

Description

Scales a vector (element-wise) by an scalar factor

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rd: Full support (masking and saturation)

rs: Full support (swizzle, abs(), neg() and constants)

rt: Not supported

Pseudocode

rd[0] = rs[0] * rt[0]

rd[1] = rs[1] * rt[0]

•

•

•

Vector scalar scalevscl.t

012345678910111213141516171819202122232425262728293031

0 1 1 0 0 1 0 1 0 1 0rt rs rd

Syntax

vscl.t rd, rs, rt

Description

Scales a vector (element-wise) by an scalar factor

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rd: Full support (masking and saturation)

rs: Full support (swizzle, abs(), neg() and constants)

rt: Not supported

Pseudocode

rd[0] = rs[0] * rt[0]

rd[1] = rs[1] * rt[0]

rd[2] = rs[2] * rt[0]

•

•

•

Vector scalar scalevscl.q

012345678910111213141516171819202122232425262728293031

0 1 1 0 0 1 0 1 0 1 1rt rs rd

Syntax

vscl.q rd, rs, rt

Description

Scales a vector (element-wise) by an scalar factor

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rd: Full support (masking and saturation)

rs: Full support (swizzle, abs(), neg() and constants)

rt: Not supported

Pseudocode

rd[0] = rs[0] * rt[0]

rd[1] = rs[1] * rt[0]

rd[2] = rs[2] * rt[0]

rd[3] = rs[3] * rt[0]

•

•

•

Vector dot productvdot.p

012345678910111213141516171819202122232425262728293031

0 1 1 0 0 1 0 0 1 0 1rt rs rd

Syntax

vdot.p rd, rs, rt

Description

Performs vector floating point dot product

Instruction performance

Throughput: 1 cycles/instruction

Latency: 7 cycles

Allowed prefixes

rt: Full support (swizzle, abs(), neg() and constants)

rd: Full support (masking and saturation)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = rs[0] * rt[0] + rs[1] * rt[1]

•

•

•

Vector dot productvdot.t

012345678910111213141516171819202122232425262728293031

0 1 1 0 0 1 0 0 1 1 0rt rs rd

Syntax

vdot.t rd, rs, rt

Description

Performs vector floating point dot product

Instruction performance

Throughput: 1 cycles/instruction

Latency: 7 cycles

Allowed prefixes

rt: Full support (swizzle, abs(), neg() and constants)

rd: Full support (masking and saturation)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = rs[0] * rt[0] + rs[1] * rt[1] + rs[2] * rt[2]

•

•

•

Vector dot productvdot.q

012345678910111213141516171819202122232425262728293031

0 1 1 0 0 1 0 0 1 1 1rt rs rd

Syntax

vdot.q rd, rs, rt

Description

Performs vector floating point dot product

Instruction performance

Throughput: 1 cycles/instruction

Latency: 7 cycles

Allowed prefixes

rt: Full support (swizzle, abs(), neg() and constants)

rd: Full support (masking and saturation)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = rs[0] * rt[0] + rs[1] * rt[1] + rs[2] * rt[2] + rs[3] * rt[3]

•

•

•

2x2 matrix determinantvdet.p

012345678910111213141516171819202122232425262728293031

0 1 1 0 0 1 1 1 0 0 1rt rs rd

Syntax

vdet.p rd, rs, rt

Description

Performs a 2x2 matrix determinant between two matrix rows

Instruction performance

Throughput: 1 cycles/instruction

Latency: 7 cycles

Allowed prefixes

rd: Full support (masking and saturation)

rs: Full support (swizzle, abs(), neg() and constants)

rt: Not supported

Pseudocode

rd[0] = rs[0] * rt[1] - rs[1] * rt[0]

•

•

•

Homogeneous dot productvhdp.p

012345678910111213141516171819202122232425262728293031

0 1 1 0 0 1 1 0 0 0 1rt rs rd

Syntax

vhdp.p rd, rs, rt

Description

Performs vector floating point homegeneous dot product

Instruction performance

Throughput: 1 cycles/instruction

Latency: 7 cycles

Allowed prefixes

rt: Full support (swizzle, abs(), neg() and constants)

rd: Full support (masking and saturation)

rs: Not supported

Pseudocode

rd[0] = rs[0] * rt[0] + rt[1]

•

•

•

Homogeneous dot productvhdp.t

012345678910111213141516171819202122232425262728293031

0 1 1 0 0 1 1 0 0 1 0rt rs rd

Syntax

vhdp.t rd, rs, rt

Description

Performs vector floating point homegeneous dot product

Instruction performance

Throughput: 1 cycles/instruction

Latency: 7 cycles

Allowed prefixes

rt: Full support (swizzle, abs(), neg() and constants)

rd: Full support (masking and saturation)

rs: Not supported

Pseudocode

rd[0] = rs[0] * rt[0] + rs[1] * rt[1] + rt[2]

•

•

•

Homogeneous dot productvhdp.q

012345678910111213141516171819202122232425262728293031

0 1 1 0 0 1 1 0 0 1 1rt rs rd

Syntax

vhdp.q rd, rs, rt

Description

Performs vector floating point homegeneous dot product

Instruction performance

Throughput: 1 cycles/instruction

Latency: 7 cycles

Allowed prefixes

rt: Full support (swizzle, abs(), neg() and constants)

rd: Full support (masking and saturation)

rs: Not supported

Pseudocode

rd[0] = rs[0] * rt[0] + rs[1] * rt[1] + rs[2] * rt[2] + rt[3]

•

•

•

Vector copyvmov.s

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0rs rd

Syntax

vmov.s rd, rs

Description

Element-wise data copy

Instruction performance

Throughput: 1 cycles/instruction

Latency: 3 cycles

Allowed prefixes

rd: Full support (masking and saturation)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = rs[0]

•

•

Vector copyvmov.p

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1rs rd

Syntax

vmov.p rd, rs

Description

Element-wise data copy

Instruction performance

Throughput: 1 cycles/instruction

Latency: 3 cycles

Allowed prefixes

rd: Full support (masking and saturation)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = rs[0]

rd[1] = rs[1]

•

•

Vector copyvmov.t

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0rs rd

Syntax

vmov.t rd, rs

Description

Element-wise data copy

Instruction performance

Throughput: 1 cycles/instruction

Latency: 3 cycles

Allowed prefixes

rd: Full support (masking and saturation)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = rs[0]

rd[1] = rs[1]

rd[2] = rs[2]

•

•

Vector copyvmov.q

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1rs rd

Syntax

vmov.q rd, rs

Description

Element-wise data copy

Instruction performance

Throughput: 1 cycles/instruction

Latency: 3 cycles

Allowed prefixes

rd: Full support (masking and saturation)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = rs[0]

rd[1] = rs[1]

rd[2] = rs[2]

rd[3] = rs[3]

•

•

Absolute valuevabs.s

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0rs rd

Syntax

vabs.s rd, rs

Description

Performs element-wise floating point absolute value

Instruction performance

Throughput: 1 cycles/instruction

Latency: 3 cycles

Allowed prefixes

rd: Full support (masking and saturation)

rs: Partial support (swizzle only)

Pseudocode

rd[0] = fabsf(rs[0])

•

•

Absolute valuevabs.p

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1rs rd

Syntax

vabs.p rd, rs

Description

Performs element-wise floating point absolute value

Instruction performance

Throughput: 1 cycles/instruction

Latency: 3 cycles

Allowed prefixes

rd: Full support (masking and saturation)

rs: Partial support (swizzle only)

Pseudocode

rd[0] = fabsf(rs[0])

rd[1] = fabsf(rs[1])

•

•

Absolute valuevabs.t

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0rs rd

Syntax

vabs.t rd, rs

Description

Performs element-wise floating point absolute value

Instruction performance

Throughput: 1 cycles/instruction

Latency: 3 cycles

Allowed prefixes

rd: Full support (masking and saturation)

rs: Partial support (swizzle only)

Pseudocode

rd[0] = fabsf(rs[0])

rd[1] = fabsf(rs[1])

rd[2] = fabsf(rs[2])

•

•

Absolute valuevabs.q

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1rs rd

Syntax

vabs.q rd, rs

Description

Performs element-wise floating point absolute value

Instruction performance

Throughput: 1 cycles/instruction

Latency: 3 cycles

Allowed prefixes

rd: Full support (masking and saturation)

rs: Partial support (swizzle only)

Pseudocode

rd[0] = fabsf(rs[0])

rd[1] = fabsf(rs[1])

rd[2] = fabsf(rs[2])

rd[3] = fabsf(rs[3])

•

•

Floating point negationvneg.s

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0rs rd

Syntax

vneg.s rd, rs

Description

Performs element-wise floating point negation

Instruction performance

Throughput: 1 cycles/instruction

Latency: 3 cycles

Allowed prefixes

rd: Full support (masking and saturation)

rs: Partial support (swizzle only)

Pseudocode

rd[0] = -rs[0]

•

•

Floating point negationvneg.p

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1rs rd

Syntax

vneg.p rd, rs

Description

Performs element-wise floating point negation

Instruction performance

Throughput: 1 cycles/instruction

Latency: 3 cycles

Allowed prefixes

rd: Full support (masking and saturation)

rs: Partial support (swizzle only)

Pseudocode

rd[0] = -rs[0]

rd[1] = -rs[1]

•

•

Floating point negationvneg.t

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0rs rd

Syntax

vneg.t rd, rs

Description

Performs element-wise floating point negation

Instruction performance

Throughput: 1 cycles/instruction

Latency: 3 cycles

Allowed prefixes

rd: Full support (masking and saturation)

rs: Partial support (swizzle only)

Pseudocode

rd[0] = -rs[0]

rd[1] = -rs[1]

rd[2] = -rs[2]

•

•

Floating point negationvneg.q

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1rs rd

Syntax

vneg.q rd, rs

Description

Performs element-wise floating point negation

Instruction performance

Throughput: 1 cycles/instruction

Latency: 3 cycles

Allowed prefixes

rd: Full support (masking and saturation)

rs: Partial support (swizzle only)

Pseudocode

rd[0] = -rs[0]

rd[1] = -rs[1]

rd[2] = -rs[2]

rd[3] = -rs[3]

•

•

Saturate float to 0..1vsat0.s

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0rs rd

Syntax

vsat0.s rd, rs

Description

Saturates inputs to the [0.0f ... 1.0f] range

Instruction performance

Throughput: 1 cycles/instruction

Latency: 3 cycles

Allowed prefixes

rd: Partial support (masking only)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = fminf(fmaxf(rs[0], 0.0f), 1.0f)

•

•

Saturate float to 0..1vsat0.p

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1rs rd

Syntax

vsat0.p rd, rs

Description

Saturates inputs to the [0.0f ... 1.0f] range

Instruction performance

Throughput: 1 cycles/instruction

Latency: 3 cycles

Allowed prefixes

rd: Partial support (masking only)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = fminf(fmaxf(rs[0], 0.0f), 1.0f)

rd[1] = fminf(fmaxf(rs[1], 0.0f), 1.0f)

•

•

Saturate float to 0..1vsat0.t

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0rs rd

Syntax

vsat0.t rd, rs

Description

Saturates inputs to the [0.0f ... 1.0f] range

Instruction performance

Throughput: 1 cycles/instruction

Latency: 3 cycles

Allowed prefixes

rd: Partial support (masking only)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = fminf(fmaxf(rs[0], 0.0f), 1.0f)

rd[1] = fminf(fmaxf(rs[1], 0.0f), 1.0f)

rd[2] = fminf(fmaxf(rs[2], 0.0f), 1.0f)

•

•

Saturate float to 0..1vsat0.q

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1rs rd

Syntax

vsat0.q rd, rs

Description

Saturates inputs to the [0.0f ... 1.0f] range

Instruction performance

Throughput: 1 cycles/instruction

Latency: 3 cycles

Allowed prefixes

rd: Partial support (masking only)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = fminf(fmaxf(rs[0], 0.0f), 1.0f)

rd[1] = fminf(fmaxf(rs[1], 0.0f), 1.0f)

rd[2] = fminf(fmaxf(rs[2], 0.0f), 1.0f)

rd[3] = fminf(fmaxf(rs[3], 0.0f), 1.0f)

•

•

Saturate float to -1..1vsat1.s

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0rs rd

Syntax

vsat1.s rd, rs

Description

Saturates inputs to the [-1.0f ... 1.0f] range

Instruction performance

Throughput: 1 cycles/instruction

Latency: 3 cycles

Allowed prefixes

rd: Partial support (masking only)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = fminf(fmaxf(rs[0], -1f), 1.0f)

•

•

Saturate float to -1..1vsat1.p

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1rs rd

Syntax

vsat1.p rd, rs

Description

Saturates inputs to the [-1.0f ... 1.0f] range

Instruction performance

Throughput: 1 cycles/instruction

Latency: 3 cycles

Allowed prefixes

rd: Partial support (masking only)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = fminf(fmaxf(rs[0], -1f), 1.0f)

rd[1] = fminf(fmaxf(rs[1], -1f), 1.0f)

•

•

Saturate float to -1..1vsat1.t

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0rs rd

Syntax

vsat1.t rd, rs

Description

Saturates inputs to the [-1.0f ... 1.0f] range

Instruction performance

Throughput: 1 cycles/instruction

Latency: 3 cycles

Allowed prefixes

rd: Partial support (masking only)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = fminf(fmaxf(rs[0], -1f), 1.0f)

rd[1] = fminf(fmaxf(rs[1], -1f), 1.0f)

rd[2] = fminf(fmaxf(rs[2], -1f), 1.0f)

•

•

Saturate float to -1..1vsat1.q

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 1rs rd

Syntax

vsat1.q rd, rs

Description

Saturates inputs to the [-1.0f ... 1.0f] range

Instruction performance

Throughput: 1 cycles/instruction

Latency: 3 cycles

Allowed prefixes

rd: Partial support (masking only)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = fminf(fmaxf(rs[0], -1f), 1.0f)

rd[1] = fminf(fmaxf(rs[1], -1f), 1.0f)

rd[2] = fminf(fmaxf(rs[2], -1f), 1.0f)

rd[3] = fminf(fmaxf(rs[3], -1f), 1.0f)

•

•

Reciprocate elementsvrcp.s

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0rs rd

Syntax

vrcp.s rd, rs

Description

Performs element-wise floating point reciprocal

Accuracy

This function provides an approximate value, with lower accuracy to what FP32

IEEE754 numbers can represent. The lowest 3.5 mantissa bits seem to be innacurate.

Please refer to psp-tests/accuracy for more details.

Relative error is smaller than 6.3e-07

Instruction performance

Throughput: 1 cycles/instruction

Latency: 7 cycles

Register overlap compatibility

Output register can only overlap with input registers if they are identical

Allowed prefixes

rs: Full support (swizzle, abs(), neg() and constants)

rd: Full support (masking and saturation)

Pseudocode

rd[0] = 1.0f / rs[0]

•

•

Reciprocate elementsvrcp.p

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1rs rd

Syntax

vrcp.p rd, rs

Description

Performs element-wise floating point reciprocal

Accuracy

This function provides an approximate value, with lower accuracy to what FP32

IEEE754 numbers can represent. The lowest 3.5 mantissa bits seem to be innacurate.

Please refer to psp-tests/accuracy for more details.

Relative error is smaller than 6.3e-07

Instruction performance

Throughput: 2 cycles/instruction

Latency: 8 cycles

Register overlap compatibility

Output register can only overlap with input registers if they are identical

Allowed prefixes

rs: Not supported

rd: Not supported

Pseudocode

rd[0] = 1.0f / rs[0]

rd[1] = 1.0f / rs[1]

•

•

Reciprocate elementsvrcp.t

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0rs rd

Syntax

vrcp.t rd, rs

Description

Performs element-wise floating point reciprocal

Accuracy

This function provides an approximate value, with lower accuracy to what FP32

IEEE754 numbers can represent. The lowest 3.5 mantissa bits seem to be innacurate.

Please refer to psp-tests/accuracy for more details.

Relative error is smaller than 6.3e-07

Instruction performance

Throughput: 3 cycles/instruction

Latency: 9 cycles

Register overlap compatibility

Output register can only overlap with input registers if they are identical

Allowed prefixes

rs: Not supported

rd: Not supported

Pseudocode

rd[0] = 1.0f / rs[0]

rd[1] = 1.0f / rs[1]

rd[2] = 1.0f / rs[2]

•

•

Reciprocate elementsvrcp.q

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1rs rd

Syntax

vrcp.q rd, rs

Description

Performs element-wise floating point reciprocal

Accuracy

This function provides an approximate value, with lower accuracy to what FP32

IEEE754 numbers can represent. The lowest 3.5 mantissa bits seem to be innacurate.

Please refer to psp-tests/accuracy for more details.

Relative error is smaller than 6.3e-07

Instruction performance

Throughput: 4 cycles/instruction

Latency: 10 cycles

Register overlap compatibility

Output register can only overlap with input registers if they are identical

Allowed prefixes

rs: Not supported

rd: Not supported

Pseudocode

rd[0] = 1.0f / rs[0]

rd[1] = 1.0f / rs[1]

rd[2] = 1.0f / rs[2]

rd[3] = 1.0f / rs[3]

•

•

Reciprocal square rootvrsq.s

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0rs rd

Syntax

vrsq.s rd, rs

Description

Performs element-wise floating pointreciprocal square root

Accuracy

This function provides an approximate value, with lower accuracy to what FP32

IEEE754 numbers can represent. The lowest 3.5 mantissa bits seem to be innacurate.

Please refer to psp-tests/accuracy for more details.

Relative error is smaller than 7.3e-07

Instruction performance

Throughput: 1 cycles/instruction

Latency: 7 cycles

Register overlap compatibility

Output register can only overlap with input registers if they are identical

Allowed prefixes

rs: Full support (swizzle, abs(), neg() and constants)

rd: Full support (masking and saturation)

Pseudocode

rd[0] = 1.0f / sqrt(rs[0])

•

•

Reciprocal square rootvrsq.p

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 1rs rd

Syntax

vrsq.p rd, rs

Description

Performs element-wise floating pointreciprocal square root

Accuracy

This function provides an approximate value, with lower accuracy to what FP32

IEEE754 numbers can represent. The lowest 3.5 mantissa bits seem to be innacurate.

Please refer to psp-tests/accuracy for more details.

Relative error is smaller than 7.3e-07

Instruction performance

Throughput: 2 cycles/instruction

Latency: 8 cycles

Register overlap compatibility

Output register can only overlap with input registers if they are identical

Allowed prefixes

rs: Not supported

rd: Not supported

Pseudocode

rd[0] = 1.0f / sqrt(rs[0])

rd[1] = 1.0f / sqrt(rs[1])

•

•

Reciprocal square rootvrsq.t

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 1 0rs rd

Syntax

vrsq.t rd, rs

Description

Performs element-wise floating pointreciprocal square root

Accuracy

This function provides an approximate value, with lower accuracy to what FP32

IEEE754 numbers can represent. The lowest 3.5 mantissa bits seem to be innacurate.

Please refer to psp-tests/accuracy for more details.

Relative error is smaller than 7.3e-07

Instruction performance

Throughput: 3 cycles/instruction

Latency: 9 cycles

Register overlap compatibility

Output register can only overlap with input registers if they are identical

Allowed prefixes

rs: Not supported

rd: Not supported

Pseudocode

rd[0] = 1.0f / sqrt(rs[0])

rd[1] = 1.0f / sqrt(rs[1])

rd[2] = 1.0f / sqrt(rs[2])

•

•

Reciprocal square rootvrsq.q

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 1 1rs rd

Syntax

vrsq.q rd, rs

Description

Performs element-wise floating pointreciprocal square root

Accuracy

This function provides an approximate value, with lower accuracy to what FP32

IEEE754 numbers can represent. The lowest 3.5 mantissa bits seem to be innacurate.

Please refer to psp-tests/accuracy for more details.

Relative error is smaller than 7.3e-07

Instruction performance

Throughput: 4 cycles/instruction

Latency: 10 cycles

Register overlap compatibility

Output register can only overlap with input registers if they are identical

Allowed prefixes

rs: Not supported

rd: Not supported

Pseudocode

rd[0] = 1.0f / sqrt(rs[0])

rd[1] = 1.0f / sqrt(rs[1])

rd[2] = 1.0f / sqrt(rs[2])

rd[3] = 1.0f / sqrt(rs[3])

•

•

Sine functionvsin.s

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0rs rd

Syntax

vsin.s rd, rs

Description

Performs element-wise floating point sin(π/2⋅rs) operation

Accuracy

This function provides an approximate value, with lower accuracy to what FP32

IEEE754 numbers can represent. The lowest 3 mantissa bits seem to be innacurate.

Please refer to psp-tests/accuracy for more details.

Absolute error is smaller than 4.8e-07

Instruction performance

Throughput: 1 cycles/instruction

Latency: 7 cycles

Register overlap compatibility

Output register can only overlap with input registers if they are identical

Allowed prefixes

rs: Full support (swizzle, abs(), neg() and constants)

rd: Full support (masking and saturation)

Pseudocode

rd[0] = sin(rs[0] * M_PI_2)

•

•

Sine functionvsin.p

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1rs rd

Syntax

vsin.p rd, rs

Description

Performs element-wise floating point sin(π/2⋅rs) operation

Accuracy

This function provides an approximate value, with lower accuracy to what FP32

IEEE754 numbers can represent. The lowest 3 mantissa bits seem to be innacurate.

Please refer to psp-tests/accuracy for more details.

Absolute error is smaller than 4.8e-07

Instruction performance

Throughput: 2 cycles/instruction

Latency: 8 cycles

Register overlap compatibility

Output register can only overlap with input registers if they are identical

Allowed prefixes

rs: Not supported

rd: Not supported

Pseudocode

rd[0] = sin(rs[0] * M_PI_2)

rd[1] = sin(rs[1] * M_PI_2)

•

•

Sine functionvsin.t

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 0rs rd

Syntax

vsin.t rd, rs

Description

Performs element-wise floating point sin(π/2⋅rs) operation

Accuracy

This function provides an approximate value, with lower accuracy to what FP32

IEEE754 numbers can represent. The lowest 3 mantissa bits seem to be innacurate.

Please refer to psp-tests/accuracy for more details.

Absolute error is smaller than 4.8e-07

Instruction performance

Throughput: 3 cycles/instruction

Latency: 9 cycles

Register overlap compatibility

Output register can only overlap with input registers if they are identical

Allowed prefixes

rs: Not supported

rd: Not supported

Pseudocode

rd[0] = sin(rs[0] * M_PI_2)

rd[1] = sin(rs[1] * M_PI_2)

rd[2] = sin(rs[2] * M_PI_2)

•

•

Sine functionvsin.q

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 1rs rd

Syntax

vsin.q rd, rs

Description

Performs element-wise floating point sin(π/2⋅rs) operation

Accuracy

This function provides an approximate value, with lower accuracy to what FP32

IEEE754 numbers can represent. The lowest 3 mantissa bits seem to be innacurate.

Please refer to psp-tests/accuracy for more details.

Absolute error is smaller than 4.8e-07

Instruction performance

Throughput: 4 cycles/instruction

Latency: 10 cycles

Register overlap compatibility

Output register can only overlap with input registers if they are identical

Allowed prefixes

rs: Not supported

rd: Not supported

Pseudocode

rd[0] = sin(rs[0] * M_PI_2)

rd[1] = sin(rs[1] * M_PI_2)

rd[2] = sin(rs[2] * M_PI_2)

rd[3] = sin(rs[3] * M_PI_2)

•

•

Cosine functionvcos.s

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 1 0 0 1 1 0 0rs rd

Syntax

vcos.s rd, rs

Description

Performs element-wise floating point cos(π/2⋅rs) operation

Accuracy

This function provides an approximate value, with lower accuracy to what FP32

IEEE754 numbers can represent. The lowest 2.5 mantissa bits seem to be innacurate.

Please refer to psp-tests/accuracy for more details.

Absolute error is smaller than 4e-07

Instruction performance

Throughput: 1 cycles/instruction

Latency: 7 cycles

Register overlap compatibility

Output register can only overlap with input registers if they are identical

Allowed prefixes

rs: Full support (swizzle, abs(), neg() and constants)

rd: Full support (masking and saturation)

Pseudocode

rd[0] = cos(rs[0] * M_PI_2)

•

•

Cosine functionvcos.p

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 1 0 0 1 1 0 1rs rd

Syntax

vcos.p rd, rs

Description

Performs element-wise floating point cos(π/2⋅rs) operation

Accuracy

This function provides an approximate value, with lower accuracy to what FP32

IEEE754 numbers can represent. The lowest 2.5 mantissa bits seem to be innacurate.

Please refer to psp-tests/accuracy for more details.

Absolute error is smaller than 4e-07

Instruction performance

Throughput: 2 cycles/instruction

Latency: 8 cycles

Register overlap compatibility

Output register can only overlap with input registers if they are identical

Allowed prefixes

rs: Not supported

rd: Not supported

Pseudocode

rd[0] = cos(rs[0] * M_PI_2)

rd[1] = cos(rs[1] * M_PI_2)

•

•

Cosine functionvcos.t

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 1 0 0 1 1 1 0rs rd

Syntax

vcos.t rd, rs

Description

Performs element-wise floating point cos(π/2⋅rs) operation

Accuracy

This function provides an approximate value, with lower accuracy to what FP32

IEEE754 numbers can represent. The lowest 2.5 mantissa bits seem to be innacurate.

Please refer to psp-tests/accuracy for more details.

Absolute error is smaller than 4e-07

Instruction performance

Throughput: 3 cycles/instruction

Latency: 9 cycles

Register overlap compatibility

Output register can only overlap with input registers if they are identical

Allowed prefixes

rs: Not supported

rd: Not supported

Pseudocode

rd[0] = cos(rs[0] * M_PI_2)

rd[1] = cos(rs[1] * M_PI_2)

rd[2] = cos(rs[2] * M_PI_2)

•

•

Cosine functionvcos.q

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 1 0 0 1 1 1 1rs rd

Syntax

vcos.q rd, rs

Description

Performs element-wise floating point cos(π/2⋅rs) operation

Accuracy

This function provides an approximate value, with lower accuracy to what FP32

IEEE754 numbers can represent. The lowest 2.5 mantissa bits seem to be innacurate.

Please refer to psp-tests/accuracy for more details.

Absolute error is smaller than 4e-07

Instruction performance

Throughput: 4 cycles/instruction

Latency: 10 cycles

Register overlap compatibility

Output register can only overlap with input registers if they are identical

Allowed prefixes

rs: Not supported

rd: Not supported

Pseudocode

rd[0] = cos(rs[0] * M_PI_2)

rd[1] = cos(rs[1] * M_PI_2)

rd[2] = cos(rs[2] * M_PI_2)

rd[3] = cos(rs[3] * M_PI_2)

•

•

Base-2 exponentiationvexp2.s

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0rs rd

Syntax

vexp2.s rd, rs

Description

Performs element-wise floating point exp2(rs) operation

Accuracy

This function provides an approximate value, with lower accuracy to what FP32

IEEE754 numbers can represent. The lowest 3 mantissa bits seem to be innacurate.

Please refer to psp-tests/accuracy for more details. Inputs larger than 127 result in

overflow (cannot represent over 2^127)

Relative error is smaller than 7.2e-07

Instruction performance

Throughput: 1 cycles/instruction

Latency: 7 cycles

Register overlap compatibility

Output register can only overlap with input registers if they are identical

Allowed prefixes

rs: Full support (swizzle, abs(), neg() and constants)

rd: Full support (masking and saturation)

Pseudocode

rd[0] = (rs[0] >= 128) ? INFINITY : (rs[0] <= -127) ? 0.0f : exp2(rs[0])

•

•

Base-2 exponentiationvexp2.p

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 1rs rd

Syntax

vexp2.p rd, rs

Description

Performs element-wise floating point exp2(rs) operation

Accuracy

This function provides an approximate value, with lower accuracy to what FP32

IEEE754 numbers can represent. The lowest 3 mantissa bits seem to be innacurate.

Please refer to psp-tests/accuracy for more details. Inputs larger than 127 result in

overflow (cannot represent over 2^127)

Relative error is smaller than 7.2e-07

Instruction performance

Throughput: 2 cycles/instruction

Latency: 8 cycles

Register overlap compatibility

Output register can only overlap with input registers if they are identical

Allowed prefixes

rs: Not supported

rd: Not supported

Pseudocode

rd[0] = (rs[0] >= 128) ? INFINITY : (rs[0] <= -127) ? 0.0f : exp2(rs[0])

rd[1] = (rs[1] >= 128) ? INFINITY : (rs[1] <= -127) ? 0.0f : exp2(rs[1])

•

•

Base-2 exponentiationvexp2.t

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 1 0 1 0 0 1 0rs rd

Syntax

vexp2.t rd, rs

Description

Performs element-wise floating point exp2(rs) operation

Accuracy

This function provides an approximate value, with lower accuracy to what FP32

IEEE754 numbers can represent. The lowest 3 mantissa bits seem to be innacurate.

Please refer to psp-tests/accuracy for more details. Inputs larger than 127 result in

overflow (cannot represent over 2^127)

Relative error is smaller than 7.2e-07

Instruction performance

Throughput: 3 cycles/instruction

Latency: 9 cycles

Register overlap compatibility

Output register can only overlap with input registers if they are identical

Allowed prefixes

rs: Not supported

rd: Not supported

Pseudocode

rd[0] = (rs[0] >= 128) ? INFINITY : (rs[0] <= -127) ? 0.0f : exp2(rs[0])

rd[1] = (rs[1] >= 128) ? INFINITY : (rs[1] <= -127) ? 0.0f : exp2(rs[1])

rd[2] = (rs[2] >= 128) ? INFINITY : (rs[2] <= -127) ? 0.0f : exp2(rs[2])

•

•

Base-2 exponentiationvexp2.q

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 1 0 1 0 0 1 1rs rd

Syntax

vexp2.q rd, rs

Description

Performs element-wise floating point exp2(rs) operation

Accuracy

This function provides an approximate value, with lower accuracy to what FP32

IEEE754 numbers can represent. The lowest 3 mantissa bits seem to be innacurate.

Please refer to psp-tests/accuracy for more details. Inputs larger than 127 result in

overflow (cannot represent over 2^127)

Relative error is smaller than 7.2e-07

Instruction performance

Throughput: 4 cycles/instruction

Latency: 10 cycles

Register overlap compatibility

Output register can only overlap with input registers if they are identical

Allowed prefixes

rs: Not supported

rd: Not supported

Pseudocode

rd[0] = (rs[0] >= 128) ? INFINITY : (rs[0] <= -127) ? 0.0f : exp2(rs[0])

rd[1] = (rs[1] >= 128) ? INFINITY : (rs[1] <= -127) ? 0.0f : exp2(rs[1])

rd[2] = (rs[2] >= 128) ? INFINITY : (rs[2] <= -127) ? 0.0f : exp2(rs[2])

rd[3] = (rs[3] >= 128) ? INFINITY : (rs[3] <= -127) ? 0.0f : exp2(rs[3])

•

•

Base-2 logarithmvlog2.s

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 0rs rd

Syntax

vlog2.s rd, rs

Description

Performs element-wise floating point log2(rs) operation

Accuracy

This function provides an approximate value, with lower accuracy to what FP32

IEEE754 numbers can represent. Accuracy varies greatly depending on the input value.

Please refer to psp-tests/accuracy for more details.

Absolute error is smaller than 3e-05

Instruction performance

Throughput: 1 cycles/instruction

Latency: 7 cycles

Register overlap compatibility

Output register can only overlap with input registers if they are identical

Allowed prefixes

rs: Full support (swizzle, abs(), neg() and constants)

rd: Full support (masking and saturation)

Pseudocode

rd[0] = log2(rs[0])

•

•

Base-2 logarithmvlog2.p

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1rs rd

Syntax

vlog2.p rd, rs

Description

Performs element-wise floating point log2(rs) operation

Accuracy

This function provides an approximate value, with lower accuracy to what FP32

IEEE754 numbers can represent. Accuracy varies greatly depending on the input value.

Please refer to psp-tests/accuracy for more details.

Absolute error is smaller than 3e-05

Instruction performance

Throughput: 2 cycles/instruction

Latency: 8 cycles

Register overlap compatibility

Output register can only overlap with input registers if they are identical

Allowed prefixes

rs: Not supported

rd: Not supported

Pseudocode

rd[0] = log2(rs[0])

rd[1] = log2(rs[1])

•

•

Base-2 logarithmvlog2.t

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 1 0 1 0 1 1 0rs rd

Syntax

vlog2.t rd, rs

Description

Performs element-wise floating point log2(rs) operation

Accuracy

This function provides an approximate value, with lower accuracy to what FP32

IEEE754 numbers can represent. Accuracy varies greatly depending on the input value.

Please refer to psp-tests/accuracy for more details.

Absolute error is smaller than 3e-05

Instruction performance

Throughput: 3 cycles/instruction

Latency: 9 cycles

Register overlap compatibility

Output register can only overlap with input registers if they are identical

Allowed prefixes

rs: Not supported

rd: Not supported

Pseudocode

rd[0] = log2(rs[0])

rd[1] = log2(rs[1])

rd[2] = log2(rs[2])

•

•

Base-2 logarithmvlog2.q

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 1 0 1 0 1 1 1rs rd

Syntax

vlog2.q rd, rs

Description

Performs element-wise floating point log2(rs) operation

Accuracy

This function provides an approximate value, with lower accuracy to what FP32

IEEE754 numbers can represent. Accuracy varies greatly depending on the input value.

Please refer to psp-tests/accuracy for more details.

Absolute error is smaller than 3e-05

Instruction performance

Throughput: 4 cycles/instruction

Latency: 10 cycles

Register overlap compatibility

Output register can only overlap with input registers if they are identical

Allowed prefixes

rs: Not supported

rd: Not supported

Pseudocode

rd[0] = log2(rs[0])

rd[1] = log2(rs[1])

rd[2] = log2(rs[2])

rd[3] = log2(rs[3])

•

•

LogB calculationvlgb.s

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 0rs rd

Syntax

vlgb.s rd, rs

Description

Performs element-wise logB() calculation

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rd: Full support (masking and saturation)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = logbf(rs[0])

•

•

Reset exponent scalevsbz.s

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 1 1 0 1 1 0 0 0rs rd

Syntax

vsbz.s rd, rs

Description

Rescales rs operand to have zero as exponent, so that it is reduced to the [1.0, 2.0)

interval. This is essentially equivalent to the vsbn instruction with rt=0.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rd: Full support (masking and saturation)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = (fpiszero(rs[0]) || fpisnan(rs[0])) ? rs[0] : (rs[0] & 0x007FFFFF) |

0x3F800000

•

•

Floating point modulusvwbn.s

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 1 1 0 0imval rs rd

Syntax

vwbn.s rd, rs, scale

Description

TODO: Document this better. Performs some sort of modulus operation.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rd: Full support (masking and saturation)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = ivwbn(rs[0], imval)

Used functions

uint32_t ivwbn(uint32_t arg, unsigned imm) {

 uint32_t sbit = arg & 0x80000000;

 uint32_t exp = (arg >> 23) & 0xff;

 uint32_t m = (arg & 0x007FFFFF) | 0x800000;

 if (!exp || exp == 0xff)

 return arg | (imm << 23);

 if (imm > exp) {

 unsigned sh = (imm - exp) & 0xf;

 m >>= sh;

 } else {

 unsigned sh = (exp - imm) & 0xf;

 m <<= sh;

 }

•

•

 return sbit | (m & 0x7FFFFF) | (imm << 23);

}

Square rootvsqrt.s

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 0rs rd

Syntax

vsqrt.s rd, rs

Description

Performs element-wise floating point aproximate square root

Accuracy

This function provides an approximate value, with lower accuracy to what FP32

IEEE754 numbers can represent. The lowest 3 mantissa bits seem to be innacurate.

Please refer to psp-tests/accuracy for more details.

Relative error is smaller than 7.1e-07

Instruction performance

Throughput: 1 cycles/instruction

Latency: 7 cycles

Register overlap compatibility

Output register can only overlap with input registers if they are identical

Allowed prefixes

rs: Full support (swizzle, abs(), neg() and constants)

rd: Full support (masking and saturation)

Pseudocode

rd[0] = sqrt(rs[0])

•

•

Square rootvsqrt.p

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 1rs rd

Syntax

vsqrt.p rd, rs

Description

Performs element-wise floating point aproximate square root

Accuracy

This function provides an approximate value, with lower accuracy to what FP32

IEEE754 numbers can represent. The lowest 3 mantissa bits seem to be innacurate.

Please refer to psp-tests/accuracy for more details.

Relative error is smaller than 7.1e-07

Instruction performance

Throughput: 2 cycles/instruction

Latency: 8 cycles

Register overlap compatibility

Output register can only overlap with input registers if they are identical

Allowed prefixes

rs: Not supported

rd: Not supported

Pseudocode

rd[0] = sqrt(rs[0])

rd[1] = sqrt(rs[1])

•

•

Square rootvsqrt.t

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 1 0 1 1 0 1 0rs rd

Syntax

vsqrt.t rd, rs

Description

Performs element-wise floating point aproximate square root

Accuracy

This function provides an approximate value, with lower accuracy to what FP32

IEEE754 numbers can represent. The lowest 3 mantissa bits seem to be innacurate.

Please refer to psp-tests/accuracy for more details.

Relative error is smaller than 7.1e-07

Instruction performance

Throughput: 3 cycles/instruction

Latency: 9 cycles

Register overlap compatibility

Output register can only overlap with input registers if they are identical

Allowed prefixes

rs: Not supported

rd: Not supported

Pseudocode

rd[0] = sqrt(rs[0])

rd[1] = sqrt(rs[1])

rd[2] = sqrt(rs[2])

•

•

Square rootvsqrt.q

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 1 0 1 1 0 1 1rs rd

Syntax

vsqrt.q rd, rs

Description

Performs element-wise floating point aproximate square root

Accuracy

This function provides an approximate value, with lower accuracy to what FP32

IEEE754 numbers can represent. The lowest 3 mantissa bits seem to be innacurate.

Please refer to psp-tests/accuracy for more details.

Relative error is smaller than 7.1e-07

Instruction performance

Throughput: 4 cycles/instruction

Latency: 10 cycles

Register overlap compatibility

Output register can only overlap with input registers if they are identical

Allowed prefixes

rs: Not supported

rd: Not supported

Pseudocode

rd[0] = sqrt(rs[0])

rd[1] = sqrt(rs[1])

rd[2] = sqrt(rs[2])

rd[3] = sqrt(rs[3])

•

•

Arc sine functionvasin.s

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 1 0 1 1 1 0 0rs rd

Syntax

vasin.s rd, rs

Description

Performs element-wise floating point asin(rs)⋅2/π operation

Accuracy

This function provides an approximate value. The precision seems quite good for

arguments between -0.5 and 0.5 (around 2.5e-7), but it becomes very inaccurate outside

of this range, as it approaches +/-1. Please refer to psp-tests/accuracy for more details.

Absolute error is smaller than 0.02

Instruction performance

Throughput: 1 cycles/instruction

Latency: 7 cycles

Register overlap compatibility

Output register can only overlap with input registers if they are identical

Allowed prefixes

rs: Full support (swizzle, abs(), neg() and constants)

rd: Full support (masking and saturation)

Pseudocode

rd[0] = asin(rs[0]) / M_PI_2

•

•

Arc sine functionvasin.p

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 1 0 1 1 1 0 1rs rd

Syntax

vasin.p rd, rs

Description

Performs element-wise floating point asin(rs)⋅2/π operation

Accuracy

This function provides an approximate value. The precision seems quite good for

arguments between -0.5 and 0.5 (around 2.5e-7), but it becomes very inaccurate outside

of this range, as it approaches +/-1. Please refer to psp-tests/accuracy for more details.

Absolute error is smaller than 0.02

Instruction performance

Throughput: 2 cycles/instruction

Latency: 8 cycles

Register overlap compatibility

Output register can only overlap with input registers if they are identical

Allowed prefixes

rs: Not supported

rd: Not supported

Pseudocode

rd[0] = asin(rs[0]) / M_PI_2

rd[1] = asin(rs[1]) / M_PI_2

•

•

Arc sine functionvasin.t

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 1 0 1 1 1 1 0rs rd

Syntax

vasin.t rd, rs

Description

Performs element-wise floating point asin(rs)⋅2/π operation

Accuracy

This function provides an approximate value. The precision seems quite good for

arguments between -0.5 and 0.5 (around 2.5e-7), but it becomes very inaccurate outside

of this range, as it approaches +/-1. Please refer to psp-tests/accuracy for more details.

Absolute error is smaller than 0.02

Instruction performance

Throughput: 3 cycles/instruction

Latency: 9 cycles

Register overlap compatibility

Output register can only overlap with input registers if they are identical

Allowed prefixes

rs: Not supported

rd: Not supported

Pseudocode

rd[0] = asin(rs[0]) / M_PI_2

rd[1] = asin(rs[1]) / M_PI_2

rd[2] = asin(rs[2]) / M_PI_2

•

•

Arc sine functionvasin.q

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 1 0 1 1 1 1 1rs rd

Syntax

vasin.q rd, rs

Description

Performs element-wise floating point asin(rs)⋅2/π operation

Accuracy

This function provides an approximate value. The precision seems quite good for

arguments between -0.5 and 0.5 (around 2.5e-7), but it becomes very inaccurate outside

of this range, as it approaches +/-1. Please refer to psp-tests/accuracy for more details.

Absolute error is smaller than 0.02

Instruction performance

Throughput: 4 cycles/instruction

Latency: 10 cycles

Register overlap compatibility

Output register can only overlap with input registers if they are identical

Allowed prefixes

rs: Not supported

rd: Not supported

Pseudocode

rd[0] = asin(rs[0]) / M_PI_2

rd[1] = asin(rs[1]) / M_PI_2

rd[2] = asin(rs[2]) / M_PI_2

rd[3] = asin(rs[3]) / M_PI_2

•

•

Negative reciprocalvnrcp.s

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0rs rd

Syntax

vnrcp.s rd, rs

Description

Performs element-wise floating point negated reciprocal

Accuracy

This function provides an approximate value, with lower accuracy to what FP32

IEEE754 numbers can represent. The lowest 3.5 mantissa bits seem to be innacurate.

Please refer to psp-tests/accuracy for more details.

Relative error is smaller than 6.3e-07

Instruction performance

Throughput: 1 cycles/instruction

Latency: 7 cycles

Register overlap compatibility

Output register can only overlap with input registers if they are identical

Allowed prefixes

rd: Full support (masking and saturation)

rs: Not supported

Pseudocode

rd[0] = -1f / rs[0]

•

•

Negative reciprocalvnrcp.p

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1rs rd

Syntax

vnrcp.p rd, rs

Description

Performs element-wise floating point negated reciprocal

Accuracy

This function provides an approximate value, with lower accuracy to what FP32

IEEE754 numbers can represent. The lowest 3.5 mantissa bits seem to be innacurate.

Please refer to psp-tests/accuracy for more details.

Relative error is smaller than 6.3e-07

Instruction performance

Throughput: 2 cycles/instruction

Latency: 8 cycles

Register overlap compatibility

Output register can only overlap with input registers if they are identical

Allowed prefixes

rs: Not supported

rd: Not supported

Pseudocode

rd[0] = -1f / rs[0]

rd[1] = -1f / rs[1]

•

•

Negative reciprocalvnrcp.t

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 0rs rd

Syntax

vnrcp.t rd, rs

Description

Performs element-wise floating point negated reciprocal

Accuracy

This function provides an approximate value, with lower accuracy to what FP32

IEEE754 numbers can represent. The lowest 3.5 mantissa bits seem to be innacurate.

Please refer to psp-tests/accuracy for more details.

Relative error is smaller than 6.3e-07

Instruction performance

Throughput: 3 cycles/instruction

Latency: 9 cycles

Register overlap compatibility

Output register can only overlap with input registers if they are identical

Allowed prefixes

rs: Not supported

rd: Not supported

Pseudocode

rd[0] = -1f / rs[0]

rd[1] = -1f / rs[1]

rd[2] = -1f / rs[2]

•

•

Negative reciprocalvnrcp.q

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 1rs rd

Syntax

vnrcp.q rd, rs

Description

Performs element-wise floating point negated reciprocal

Accuracy

This function provides an approximate value, with lower accuracy to what FP32

IEEE754 numbers can represent. The lowest 3.5 mantissa bits seem to be innacurate.

Please refer to psp-tests/accuracy for more details.

Relative error is smaller than 6.3e-07

Instruction performance

Throughput: 4 cycles/instruction

Latency: 10 cycles

Register overlap compatibility

Output register can only overlap with input registers if they are identical

Allowed prefixes

rs: Not supported

rd: Not supported

Pseudocode

rd[0] = -1f / rs[0]

rd[1] = -1f / rs[1]

rd[2] = -1f / rs[2]

rd[3] = -1f / rs[3]

•

•

Negative sine functionvnsin.s

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0rs rd

Syntax

vnsin.s rd, rs

Description

Performs element-wise floating point -sin(π/2⋅rs) operation

Accuracy

This function provides an approximate value, with lower accuracy to what FP32

IEEE754 numbers can represent. The lowest 3 mantissa bits seem to be innacurate.

Please refer to psp-tests/accuracy for more details.

Absolute error is smaller than 4.8e-07

Instruction performance

Throughput: 1 cycles/instruction

Latency: 7 cycles

Register overlap compatibility

Output register can only overlap with input registers if they are identical

Allowed prefixes

rd: Full support (masking and saturation)

rs: Not supported

Pseudocode

rd[0] = -sin(rs[0] * M_PI_2)

•

•

Negative sine functionvnsin.p

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 1rs rd

Syntax

vnsin.p rd, rs

Description

Performs element-wise floating point -sin(π/2⋅rs) operation

Accuracy

This function provides an approximate value, with lower accuracy to what FP32

IEEE754 numbers can represent. The lowest 3 mantissa bits seem to be innacurate.

Please refer to psp-tests/accuracy for more details.

Absolute error is smaller than 4.8e-07

Instruction performance

Throughput: 2 cycles/instruction

Latency: 8 cycles

Register overlap compatibility

Output register can only overlap with input registers if they are identical

Allowed prefixes

rs: Not supported

rd: Not supported

Pseudocode

rd[0] = -sin(rs[0] * M_PI_2)

rd[1] = -sin(rs[1] * M_PI_2)

•

•

Negative sine functionvnsin.t

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 1 1 0 1 0 1 0rs rd

Syntax

vnsin.t rd, rs

Description

Performs element-wise floating point -sin(π/2⋅rs) operation

Accuracy

This function provides an approximate value, with lower accuracy to what FP32

IEEE754 numbers can represent. The lowest 3 mantissa bits seem to be innacurate.

Please refer to psp-tests/accuracy for more details.

Absolute error is smaller than 4.8e-07

Instruction performance

Throughput: 3 cycles/instruction

Latency: 9 cycles

Register overlap compatibility

Output register can only overlap with input registers if they are identical

Allowed prefixes

rs: Not supported

rd: Not supported

Pseudocode

rd[0] = -sin(rs[0] * M_PI_2)

rd[1] = -sin(rs[1] * M_PI_2)

rd[2] = -sin(rs[2] * M_PI_2)

•

•

Negative sine functionvnsin.q

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 1 1 0 1 0 1 1rs rd

Syntax

vnsin.q rd, rs

Description

Performs element-wise floating point -sin(π/2⋅rs) operation

Accuracy

This function provides an approximate value, with lower accuracy to what FP32

IEEE754 numbers can represent. The lowest 3 mantissa bits seem to be innacurate.

Please refer to psp-tests/accuracy for more details.

Absolute error is smaller than 4.8e-07

Instruction performance

Throughput: 4 cycles/instruction

Latency: 10 cycles

Register overlap compatibility

Output register can only overlap with input registers if they are identical

Allowed prefixes

rs: Not supported

rd: Not supported

Pseudocode

rd[0] = -sin(rs[0] * M_PI_2)

rd[1] = -sin(rs[1] * M_PI_2)

rd[2] = -sin(rs[2] * M_PI_2)

rd[3] = -sin(rs[3] * M_PI_2)

•

•

Base-2 negative exponentiationvrexp2.s

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0rs rd

Syntax

vrexp2.s rd, rs

Description

Performs element-wise floating point 1/exp2(rs) operation (equivalent to exp2(-rs))

Accuracy

This function provides an approximate value, with lower accuracy to what FP32

IEEE754 numbers can represent. The lowest 3 mantissa bits seem to be innacurate.

Please refer to psp-tests/accuracy for more details. Inputs larger than 127 result in

overflow (cannot represent over 2^127)

Relative error is smaller than 7.2e-07

Instruction performance

Throughput: 1 cycles/instruction

Latency: 7 cycles

Register overlap compatibility

Output register can only overlap with input registers if they are identical

Allowed prefixes

rd: Full support (masking and saturation)

rs: Not supported

Pseudocode

rd[0] = (rs[0] >= 127) ? 0.0f : (rs[0] <= -128) ? INFINITY : exp2(-rs[0])

•

•

Base-2 negative exponentiationvrexp2.p

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 1rs rd

Syntax

vrexp2.p rd, rs

Description

Performs element-wise floating point 1/exp2(rs) operation (equivalent to exp2(-rs))

Accuracy

This function provides an approximate value, with lower accuracy to what FP32

IEEE754 numbers can represent. The lowest 3 mantissa bits seem to be innacurate.

Please refer to psp-tests/accuracy for more details. Inputs larger than 127 result in

overflow (cannot represent over 2^127)

Relative error is smaller than 7.2e-07

Instruction performance

Throughput: 2 cycles/instruction

Latency: 8 cycles

Register overlap compatibility

Output register can only overlap with input registers if they are identical

Allowed prefixes

rs: Not supported

rd: Not supported

Pseudocode

rd[0] = (rs[0] >= 127) ? 0.0f : (rs[0] <= -128) ? INFINITY : exp2(-rs[0])

rd[1] = (rs[1] >= 127) ? 0.0f : (rs[1] <= -128) ? INFINITY : exp2(-rs[1])

•

•

Base-2 negative exponentiationvrexp2.t

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 1 1 1 0 0 1 0rs rd

Syntax

vrexp2.t rd, rs

Description

Performs element-wise floating point 1/exp2(rs) operation (equivalent to exp2(-rs))

Accuracy

This function provides an approximate value, with lower accuracy to what FP32

IEEE754 numbers can represent. The lowest 3 mantissa bits seem to be innacurate.

Please refer to psp-tests/accuracy for more details. Inputs larger than 127 result in

overflow (cannot represent over 2^127)

Relative error is smaller than 7.2e-07

Instruction performance

Throughput: 3 cycles/instruction

Latency: 9 cycles

Register overlap compatibility

Output register can only overlap with input registers if they are identical

Allowed prefixes

rs: Not supported

rd: Not supported

Pseudocode

rd[0] = (rs[0] >= 127) ? 0.0f : (rs[0] <= -128) ? INFINITY : exp2(-rs[0])

rd[1] = (rs[1] >= 127) ? 0.0f : (rs[1] <= -128) ? INFINITY : exp2(-rs[1])

rd[2] = (rs[2] >= 127) ? 0.0f : (rs[2] <= -128) ? INFINITY : exp2(-rs[2])

•

•

Base-2 negative exponentiationvrexp2.q

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 1 1 1 0 0 1 1rs rd

Syntax

vrexp2.q rd, rs

Description

Performs element-wise floating point 1/exp2(rs) operation (equivalent to exp2(-rs))

Accuracy

This function provides an approximate value, with lower accuracy to what FP32

IEEE754 numbers can represent. The lowest 3 mantissa bits seem to be innacurate.

Please refer to psp-tests/accuracy for more details. Inputs larger than 127 result in

overflow (cannot represent over 2^127)

Relative error is smaller than 7.2e-07

Instruction performance

Throughput: 4 cycles/instruction

Latency: 10 cycles

Register overlap compatibility

Output register can only overlap with input registers if they are identical

Allowed prefixes

rs: Not supported

rd: Not supported

Pseudocode

rd[0] = (rs[0] >= 127) ? 0.0f : (rs[0] <= -128) ? INFINITY : exp2(-rs[0])

rd[1] = (rs[1] >= 127) ? 0.0f : (rs[1] <= -128) ? INFINITY : exp2(-rs[1])

rd[2] = (rs[2] >= 127) ? 0.0f : (rs[2] <= -128) ? INFINITY : exp2(-rs[2])

rd[3] = (rs[3] >= 127) ? 0.0f : (rs[3] <= -128) ? INFINITY : exp2(-rs[3])

•

•

Element min-sort pass #1vsrt1.q

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1rs rd

Syntax

vsrt1.q rd, rs

Description

Performs a min() sorting step between elements pairs 0-1 and 2-3, shuffling them

depending on their values.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rd: Full support (masking and saturation)

rs: Not supported

Pseudocode

rd[0] = fminf(rs[0], rs[1])

rd[1] = fmaxf(rs[0], rs[1])

rd[2] = fminf(rs[2], rs[3])

rd[3] = fmaxf(rs[2], rs[3])

•

•

Element min-sort pass #2vsrt2.q

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 1rs rd

Syntax

vsrt2.q rd, rs

Description

Performs a min() sorting step between elements pairs 3-0 and 1-2, shuffling them

depending on their values.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rd: Full support (masking and saturation)

rs: Not supported

Pseudocode

rd[0] = fminf(rs[0], rs[3])

rd[1] = fminf(rs[1], rs[2])

rd[2] = fmaxf(rs[1], rs[2])

rd[3] = fmaxf(rs[0], rs[3])

•

•

Element max-sort pass #1vsrt3.q

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 1 1rs rd

Syntax

vsrt3.q rd, rs

Description

Performs a max() sorting step between elements pairs 0-1 and 2-3, shuffling them

depending on their values.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rd: Full support (masking and saturation)

rs: Not supported

Pseudocode

rd[0] = fmaxf(rs[0], rs[1])

rd[1] = fminf(rs[0], rs[1])

rd[2] = fmaxf(rs[2], rs[3])

rd[3] = fminf(rs[2], rs[3])

•

•

Element max-sort pass #2vsrt4.q

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 1 0 0 1 0 0 1 1 1rs rd

Syntax

vsrt4.q rd, rs

Description

Performs a max() sorting step between elements pairs 3-0 and 1-2, shuffling them

depending on their values.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rd: Full support (masking and saturation)

rs: Not supported

Pseudocode

rd[0] = fmaxf(rs[0], rs[3])

rd[1] = fmaxf(rs[1], rs[2])

rd[2] = fminf(rs[1], rs[2])

rd[3] = fminf(rs[0], rs[3])

•

•

Butterfly function #1vbfy1.p

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 1rs rd

Syntax

vbfy1.p rd, rs

Description

Performs a `butterfly` operation between the input elements.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rd: Full support (masking and saturation)

rs: Not supported

Pseudocode

rd[0] = rs[0] + rs[1]

rd[1] = rs[0] - rs[1]

•

•

Butterfly function #1vbfy1.q

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1 1rs rd

Syntax

vbfy1.q rd, rs

Description

Performs a `butterfly` operation between the input elements.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rd: Full support (masking and saturation)

rs: Not supported

Pseudocode

rd[0] = rs[0] + rs[1]

rd[1] = rs[0] - rs[1]

rd[2] = rs[2] + rs[3]

rd[3] = rs[2] - rs[3]

•

•

Butterfly function #2vbfy2.q

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 1 0 0 0 0 1 1 1 1rs rd

Syntax

vbfy2.q rd, rs

Description

Performs a `butterfly` operation between the input elements.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rd: Full support (masking and saturation)

rs: Not supported

Pseudocode

rd[0] = rs[0] + rs[2]

rd[1] = rs[1] + rs[3]

rd[2] = rs[0] - rs[2]

rd[3] = rs[1] - rs[3]

•

•

Sign functionvsgn.s

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0rs rd

Syntax

vsgn.s rd, rs

Description

Performs element-wise floating point sign(rs) operation. This function returns -1, 0 or 1

depending on whether the input is negative zero or positive respectively.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rd: Full support (masking and saturation)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = rs[0] < 0 ? -1f : rs[0] > 0 ? 1.0f : 0.0f

•

•

Sign functionvsgn.p

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 1rs rd

Syntax

vsgn.p rd, rs

Description

Performs element-wise floating point sign(rs) operation. This function returns -1, 0 or 1

depending on whether the input is negative zero or positive respectively.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rd: Full support (masking and saturation)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = rs[0] < 0 ? -1f : rs[0] > 0 ? 1.0f : 0.0f

rd[1] = rs[1] < 0 ? -1f : rs[1] > 0 ? 1.0f : 0.0f

•

•

Sign functionvsgn.t

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 1 0 0 1 0 1 0 1 0rs rd

Syntax

vsgn.t rd, rs

Description

Performs element-wise floating point sign(rs) operation. This function returns -1, 0 or 1

depending on whether the input is negative zero or positive respectively.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rd: Full support (masking and saturation)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = rs[0] < 0 ? -1f : rs[0] > 0 ? 1.0f : 0.0f

rd[1] = rs[1] < 0 ? -1f : rs[1] > 0 ? 1.0f : 0.0f

rd[2] = rs[2] < 0 ? -1f : rs[2] > 0 ? 1.0f : 0.0f

•

•

Sign functionvsgn.q

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 1 0 0 1 0 1 0 1 1rs rd

Syntax

vsgn.q rd, rs

Description

Performs element-wise floating point sign(rs) operation. This function returns -1, 0 or 1

depending on whether the input is negative zero or positive respectively.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rd: Full support (masking and saturation)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = rs[0] < 0 ? -1f : rs[0] > 0 ? 1.0f : 0.0f

rd[1] = rs[1] < 0 ? -1f : rs[1] > 0 ? 1.0f : 0.0f

rd[2] = rs[2] < 0 ? -1f : rs[2] > 0 ? 1.0f : 0.0f

rd[3] = rs[3] < 0 ? -1f : rs[3] > 0 ? 1.0f : 0.0f

•

•

One complement functionvocp.s

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0rs rd

Syntax

vocp.s rd, rs

Description

Performs element-wise one's complement (1.0f - x)

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rd: Full support (masking and saturation)

rs: Not supported

Pseudocode

rd[0] = 1 - rs[0]

•

•

One complement functionvocp.p

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1rs rd

Syntax

vocp.p rd, rs

Description

Performs element-wise one's complement (1.0f - x)

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rd: Full support (masking and saturation)

rs: Not supported

Pseudocode

rd[0] = 1 - rs[0]

rd[1] = 1 - rs[1]

•

•

One complement functionvocp.t

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 1 0rs rd

Syntax

vocp.t rd, rs

Description

Performs element-wise one's complement (1.0f - x)

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rd: Full support (masking and saturation)

rs: Not supported

Pseudocode

rd[0] = 1 - rs[0]

rd[1] = 1 - rs[1]

rd[2] = 1 - rs[2]

•

•

One complement functionvocp.q

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 1 1rs rd

Syntax

vocp.q rd, rs

Description

Performs element-wise one's complement (1.0f - x)

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rd: Full support (masking and saturation)

rs: Not supported

Pseudocode

rd[0] = 1 - rs[0]

rd[1] = 1 - rs[1]

rd[2] = 1 - rs[2]

rd[3] = 1 - rs[3]

•

•

Integer to float with scalingvi2f.s

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 1 0 1 0 0 0 0imval rs rd

Syntax

vi2f.s rd, rs, scale

Description

Performs element-wise integer to float conversion with optional scaling factor. The

integer is divided by 2^scale after the conversion.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rd: Full support (masking and saturation)

rs: Partial support (swizzle only)

Pseudocode

rd[0] = ldexp(rs[0], -imval)

•

•

Integer to float with scalingvi2f.p

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 1 0 1 0 0 0 1imval rs rd

Syntax

vi2f.p rd, rs, scale

Description

Performs element-wise integer to float conversion with optional scaling factor. The

integer is divided by 2^scale after the conversion.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rd: Full support (masking and saturation)

rs: Partial support (swizzle only)

Pseudocode

rd[0] = ldexp(rs[0], -imval)

rd[1] = ldexp(rs[1], -imval)

•

•

Integer to float with scalingvi2f.t

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 1 0 1 0 0 1 0imval rs rd

Syntax

vi2f.t rd, rs, scale

Description

Performs element-wise integer to float conversion with optional scaling factor. The

integer is divided by 2^scale after the conversion.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rd: Full support (masking and saturation)

rs: Partial support (swizzle only)

Pseudocode

rd[0] = ldexp(rs[0], -imval)

rd[1] = ldexp(rs[1], -imval)

rd[2] = ldexp(rs[2], -imval)

•

•

Integer to float with scalingvi2f.q

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 1 0 1 0 0 1 1imval rs rd

Syntax

vi2f.q rd, rs, scale

Description

Performs element-wise integer to float conversion with optional scaling factor. The

integer is divided by 2^scale after the conversion.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rd: Full support (masking and saturation)

rs: Partial support (swizzle only)

Pseudocode

rd[0] = ldexp(rs[0], -imval)

rd[1] = ldexp(rs[1], -imval)

rd[2] = ldexp(rs[2], -imval)

rd[3] = ldexp(rs[3], -imval)

•

•

Float to integer round-to-nearest with scalingvf2in.s

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 1 0 0 0 0 0 0imval rs rd

Syntax

vf2in.s rd, rs, scale

Description

Performs element-wise float to integer conversion with optional scaling factor, rounding

to the nearest integer

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rd: Partial support (masking only)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = rintf(rs[0] * pow(2.0f, imval))

•

•

Float to integer round-to-nearest with scalingvf2in.p

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 1 0 0 0 0 0 1imval rs rd

Syntax

vf2in.p rd, rs, scale

Description

Performs element-wise float to integer conversion with optional scaling factor, rounding

to the nearest integer

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rd: Partial support (masking only)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = rintf(rs[0] * pow(2.0f, imval))

rd[1] = rintf(rs[1] * pow(2.0f, imval))

•

•

Float to integer round-to-nearest with scalingvf2in.t

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 1 0 0 0 0 1 0imval rs rd

Syntax

vf2in.t rd, rs, scale

Description

Performs element-wise float to integer conversion with optional scaling factor, rounding

to the nearest integer

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rd: Partial support (masking only)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = rintf(rs[0] * pow(2.0f, imval))

rd[1] = rintf(rs[1] * pow(2.0f, imval))

rd[2] = rintf(rs[2] * pow(2.0f, imval))

•

•

Float to integer round-to-nearest with scalingvf2in.q

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 1 0 0 0 0 1 1imval rs rd

Syntax

vf2in.q rd, rs, scale

Description

Performs element-wise float to integer conversion with optional scaling factor, rounding

to the nearest integer

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rd: Partial support (masking only)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = rintf(rs[0] * pow(2.0f, imval))

rd[1] = rintf(rs[1] * pow(2.0f, imval))

rd[2] = rintf(rs[2] * pow(2.0f, imval))

rd[3] = rintf(rs[3] * pow(2.0f, imval))

•

•

Float to integer truncation with scalingvf2iz.s

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 1 0 0 0 1 0 0imval rs rd

Syntax

vf2iz.s rd, rs, scale

Description

Performs element-wise float to integer conversion with optional scaling factor, truncating

the decimal argument (that is, rounding towards zero)

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rd: Partial support (masking only)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = truncf(rs[0] * pow(2.0f, imval))

•

•

Float to integer truncation with scalingvf2iz.p

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 1 0 0 0 1 0 1imval rs rd

Syntax

vf2iz.p rd, rs, scale

Description

Performs element-wise float to integer conversion with optional scaling factor, truncating

the decimal argument (that is, rounding towards zero)

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rd: Partial support (masking only)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = truncf(rs[0] * pow(2.0f, imval))

rd[1] = truncf(rs[1] * pow(2.0f, imval))

•

•

Float to integer truncation with scalingvf2iz.t

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 1 0 0 0 1 1 0imval rs rd

Syntax

vf2iz.t rd, rs, scale

Description

Performs element-wise float to integer conversion with optional scaling factor, truncating

the decimal argument (that is, rounding towards zero)

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rd: Partial support (masking only)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = truncf(rs[0] * pow(2.0f, imval))

rd[1] = truncf(rs[1] * pow(2.0f, imval))

rd[2] = truncf(rs[2] * pow(2.0f, imval))

•

•

Float to integer truncation with scalingvf2iz.q

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 1 0 0 0 1 1 1imval rs rd

Syntax

vf2iz.q rd, rs, scale

Description

Performs element-wise float to integer conversion with optional scaling factor, truncating

the decimal argument (that is, rounding towards zero)

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rd: Partial support (masking only)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = truncf(rs[0] * pow(2.0f, imval))

rd[1] = truncf(rs[1] * pow(2.0f, imval))

rd[2] = truncf(rs[2] * pow(2.0f, imval))

rd[3] = truncf(rs[3] * pow(2.0f, imval))

•

•

Float to integer round-up with scalingvf2iu.s

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 1 0 0 1 0 0 0imval rs rd

Syntax

vf2iu.s rd, rs, scale

Description

Performs element-wise float to integer conversion with optional scaling factor, rounding

up (that is, towards the next, equal or greater, integer value)

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rd: Partial support (masking only)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = ceilf(rs[0] * pow(2.0f, imval))

•

•

Float to integer round-up with scalingvf2iu.p

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 1 0 0 1 0 0 1imval rs rd

Syntax

vf2iu.p rd, rs, scale

Description

Performs element-wise float to integer conversion with optional scaling factor, rounding

up (that is, towards the next, equal or greater, integer value)

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rd: Partial support (masking only)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = ceilf(rs[0] * pow(2.0f, imval))

rd[1] = ceilf(rs[1] * pow(2.0f, imval))

•

•

Float to integer round-up with scalingvf2iu.t

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 1 0 0 1 0 1 0imval rs rd

Syntax

vf2iu.t rd, rs, scale

Description

Performs element-wise float to integer conversion with optional scaling factor, rounding

up (that is, towards the next, equal or greater, integer value)

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rd: Partial support (masking only)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = ceilf(rs[0] * pow(2.0f, imval))

rd[1] = ceilf(rs[1] * pow(2.0f, imval))

rd[2] = ceilf(rs[2] * pow(2.0f, imval))

•

•

Float to integer round-up with scalingvf2iu.q

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 1 0 0 1 0 1 1imval rs rd

Syntax

vf2iu.q rd, rs, scale

Description

Performs element-wise float to integer conversion with optional scaling factor, rounding

up (that is, towards the next, equal or greater, integer value)

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rd: Partial support (masking only)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = ceilf(rs[0] * pow(2.0f, imval))

rd[1] = ceilf(rs[1] * pow(2.0f, imval))

rd[2] = ceilf(rs[2] * pow(2.0f, imval))

rd[3] = ceilf(rs[3] * pow(2.0f, imval))

•

•

Float to integer round-down with scalingvf2id.s

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 1 0 0 1 1 0 0imval rs rd

Syntax

vf2id.s rd, rs, scale

Description

Performs element-wise float to integer conversion with optional scaling factor, rounding

down (that is, towards the previous, equal or smaller, integer value)

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rd: Partial support (masking only)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = floorf(rs[0] * pow(2.0f, imval))

•

•

Float to integer round-down with scalingvf2id.p

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 1 0 0 1 1 0 1imval rs rd

Syntax

vf2id.p rd, rs, scale

Description

Performs element-wise float to integer conversion with optional scaling factor, rounding

down (that is, towards the previous, equal or smaller, integer value)

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rd: Partial support (masking only)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = floorf(rs[0] * pow(2.0f, imval))

rd[1] = floorf(rs[1] * pow(2.0f, imval))

•

•

Float to integer round-down with scalingvf2id.t

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 1 0 0 1 1 1 0imval rs rd

Syntax

vf2id.t rd, rs, scale

Description

Performs element-wise float to integer conversion with optional scaling factor, rounding

down (that is, towards the previous, equal or smaller, integer value)

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rd: Partial support (masking only)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = floorf(rs[0] * pow(2.0f, imval))

rd[1] = floorf(rs[1] * pow(2.0f, imval))

rd[2] = floorf(rs[2] * pow(2.0f, imval))

•

•

Float to integer round-down with scalingvf2id.q

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 1 0 0 1 1 1 1imval rs rd

Syntax

vf2id.q rd, rs, scale

Description

Performs element-wise float to integer conversion with optional scaling factor, rounding

down (that is, towards the previous, equal or smaller, integer value)

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rd: Partial support (masking only)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = floorf(rs[0] * pow(2.0f, imval))

rd[1] = floorf(rs[1] * pow(2.0f, imval))

rd[2] = floorf(rs[2] * pow(2.0f, imval))

rd[3] = floorf(rs[3] * pow(2.0f, imval))

•

•

Rotation matrix row calculationvrot.p

012345678910111213141516171819202122232425262728293031

1 1 1 1 0 0 1 1 1 0 1 0 1imval rs rd

Syntax

vrot.p rd, rs, imm5

Description

Calculates a rotation matrix row, given an angle argument

Accuracy

This function provides the same accuracy as its vsin/vcos counterparts.

Absolute error is smaller than 4.8e-07

Instruction performance

Throughput: 2 cycles/instruction

Latency: 8 cycles

Register overlap compatibility

Output register cannot overlap with input registers

Allowed prefixes

rs: Not supported

rd: Not supported

Pseudocode

rd[0] = ivrot(0, rs[0], imval)

rd[1] = ivrot(1, rs[0], imval)

Used functions

float ivrot(unsigned elem, float arg, unsigned imm) {

 unsigned cl = imm & 3;

 unsigned sl = (imm >> 2) & 3;

•

•

 float s = sin(arg * M_PI_2);

 float c = cos(arg * M_PI_2);

 if (imm & 0x10)

 s = -s;

 // Special case where all elements are sine but one

 if (cl == sl)

 return (elem == cl) ? c : s;

 // Each bit pair indicates the position

 return (elem == cl) ? c :

 (elem == sl) ? s : 0.0f;

}

Rotation matrix row calculationvrot.t

012345678910111213141516171819202122232425262728293031

1 1 1 1 0 0 1 1 1 0 1 1 0imval rs rd

Syntax

vrot.t rd, rs, imm5

Description

Calculates a rotation matrix row, given an angle argument

Accuracy

This function provides the same accuracy as its vsin/vcos counterparts.

Absolute error is smaller than 4.8e-07

Instruction performance

Throughput: 2 cycles/instruction

Latency: 8 cycles

Register overlap compatibility

Output register cannot overlap with input registers

Allowed prefixes

rs: Not supported

rd: Not supported

Pseudocode

rd[0] = ivrot(0, rs[0], imval)

rd[1] = ivrot(1, rs[0], imval)

rd[2] = ivrot(2, rs[0], imval)

Used functions

float ivrot(unsigned elem, float arg, unsigned imm) {

 unsigned cl = imm & 3;

•

•

 unsigned sl = (imm >> 2) & 3;

 float s = sin(arg * M_PI_2);

 float c = cos(arg * M_PI_2);

 if (imm & 0x10)

 s = -s;

 // Special case where all elements are sine but one

 if (cl == sl)

 return (elem == cl) ? c : s;

 // Each bit pair indicates the position

 return (elem == cl) ? c :

 (elem == sl) ? s : 0.0f;

}

Rotation matrix row calculationvrot.q

012345678910111213141516171819202122232425262728293031

1 1 1 1 0 0 1 1 1 0 1 1 1imval rs rd

Syntax

vrot.q rd, rs, imm5

Description

Calculates a rotation matrix row, given an angle argument

Accuracy

This function provides the same accuracy as its vsin/vcos counterparts.

Absolute error is smaller than 4.8e-07

Instruction performance

Throughput: 2 cycles/instruction

Latency: 8 cycles

Register overlap compatibility

Output register cannot overlap with input registers

Allowed prefixes

rs: Not supported

rd: Not supported

Pseudocode

rd[0] = ivrot(0, rs[0], imval)

rd[1] = ivrot(1, rs[0], imval)

rd[2] = ivrot(2, rs[0], imval)

rd[3] = ivrot(3, rs[0], imval)

Used functions

float ivrot(unsigned elem, float arg, unsigned imm) {

•

•

 unsigned cl = imm & 3;

 unsigned sl = (imm >> 2) & 3;

 float s = sin(arg * M_PI_2);

 float c = cos(arg * M_PI_2);

 if (imm & 0x10)

 s = -s;

 // Special case where all elements are sine but one

 if (cl == sl)

 return (elem == cl) ? c : s;

 // Each bit pair indicates the position

 return (elem == cl) ? c :

 (elem == sl) ? s : 0.0f;

}

One complement with saturationvsocp.s

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0rs rd

Syntax

vsocp.s rd, rs

Description

Performs element-wise one's complement (1.0f - x) with saturation to [0.0f ... 1.0f]

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rs: Not supported

rd: Not supported

Pseudocode

rd[0] = fminf(fmaxf(1.0f - rs[0], 0.0f), 1.0f)

rd[1] = fminf(fmaxf(rs[0], 0.0f), 1.0f)

•

•

One complement with saturationvsocp.p

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 1rs rd

Syntax

vsocp.p rd, rs

Description

Performs element-wise one's complement (1.0f - x) with saturation to [0.0f ... 1.0f]

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rs: Not supported

rd: Not supported

Pseudocode

rd[0] = fminf(fmaxf(1.0f - rs[0], 0.0f), 1.0f)

rd[1] = fminf(fmaxf(rs[0], 0.0f), 1.0f)

rd[2] = fminf(fmaxf(1.0f - rs[1], 0.0f), 1.0f)

rd[3] = fminf(fmaxf(rs[1], 0.0f), 1.0f)

•

•

Calculate element averagevavg.p

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 1 0 0 0 1 1 1 0 1rs rd

Syntax

vavg.p rd, rs

Description

Calculates the average value of the vector elements

Instruction performance

Throughput: 1 cycles/instruction

Latency: 7 cycles

Allowed prefixes

rd: Full support (masking and saturation)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = (rs[0] + rs[1]) / 2

•

•

Calculate element averagevavg.t

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 1 0 0 0 1 1 1 1 0rs rd

Syntax

vavg.t rd, rs

Description

Calculates the average value of the vector elements

Instruction performance

Throughput: 1 cycles/instruction

Latency: 7 cycles

Allowed prefixes

rd: Full support (masking and saturation)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = (rs[0] + rs[1] + rs[2]) / 3

•

•

Calculate element averagevavg.q

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 1 0 0 0 1 1 1 1 1rs rd

Syntax

vavg.q rd, rs

Description

Calculates the average value of the vector elements

Instruction performance

Throughput: 1 cycles/instruction

Latency: 7 cycles

Allowed prefixes

rd: Full support (masking and saturation)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = (rs[0] + rs[1] + rs[2] + rs[3]) / 4

•

•

Calculate element sumvfad.p

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 1 0 0 0 1 1 0 0 1rs rd

Syntax

vfad.p rd, rs

Description

Adds all vector elements toghether producing a single result

Instruction performance

Throughput: 1 cycles/instruction

Latency: 7 cycles

Allowed prefixes

rd: Full support (masking and saturation)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = rs[0] + rs[1]

•

•

Calculate element sumvfad.t

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0rs rd

Syntax

vfad.t rd, rs

Description

Adds all vector elements toghether producing a single result

Instruction performance

Throughput: 1 cycles/instruction

Latency: 7 cycles

Allowed prefixes

rd: Full support (masking and saturation)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = rs[0] + rs[1] + rs[2]

•

•

Calculate element sumvfad.q

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 1 0 0 0 1 1 0 1 1rs rd

Syntax

vfad.q rd, rs

Description

Adds all vector elements toghether producing a single result

Instruction performance

Throughput: 1 cycles/instruction

Latency: 7 cycles

Allowed prefixes

rd: Full support (masking and saturation)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = rs[0] + rs[1] + rs[2] + rs[3]

•

•

Compare vector elementsvcmp.s

012345678910111213141516171819202122232425262728293031

0 1 1 0 1 1 0 0 0 0 0 0 0 0rt rs cond

Syntax

vcmp.s cond, rs, rt

Description

Performs an element wise comparison specified by the immediate and writes the result

to VFPU_CC. Aggregated `and` and `or` operations are also calculated for convenience.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 8 cycles

Allowed prefixes

rt: Full support (swizzle, abs(), neg() and constants)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

vfpu_cc[0] = comparefn(cond, rs[0], rt[0])

vfpu_cc[4] = vfpu_cc[0]

vfpu_cc[5] = vfpu_cc[0]

Used functions

unsigned comparefn(unsigned cond, float rs, float rt) {

 switch (cond) {

 case 0: return 0;

 case 1: return rs == rt;

 case 2: return rs < rt;

 case 3: return rs <= rt;

 case 4: return 1;

 case 5: return rs != rt;

 case 6: return rs >= rt;

 case 7: return rs > rt;

 case 8: return rs == 0;

•

•

 case 9: return isnan(rs);

 case 10: return isinf(rs);

 case 11: return isinf(rs) || isnan(rs);

 case 12: return rs != 0;

 case 13: return !isnan(rs);

 case 14: return !isinf(rs);

 case 15: return !isnan(rs) && !isinf(rs);

 };

}

Compare vector elementsvcmp.p

012345678910111213141516171819202122232425262728293031

0 1 1 0 1 1 0 0 0 0 1 0 0 0rt rs cond

Syntax

vcmp.p cond, rs, rt

Description

Performs an element wise comparison specified by the immediate and writes the result

to VFPU_CC. Aggregated `and` and `or` operations are also calculated for convenience.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 8 cycles

Allowed prefixes

rt: Full support (swizzle, abs(), neg() and constants)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

vfpu_cc[0] = comparefn(cond, rs[0], rt[0])

vfpu_cc[1] = comparefn(cond, rs[1], rt[1])

vfpu_cc[4] = vfpu_cc[0] | vfpu_cc[1]

vfpu_cc[5] = vfpu_cc[0] & vfpu_cc[1]

Used functions

unsigned comparefn(unsigned cond, float rs, float rt) {

 switch (cond) {

 case 0: return 0;

 case 1: return rs == rt;

 case 2: return rs < rt;

 case 3: return rs <= rt;

 case 4: return 1;

 case 5: return rs != rt;

 case 6: return rs >= rt;

 case 7: return rs > rt;

•

•

 case 8: return rs == 0;

 case 9: return isnan(rs);

 case 10: return isinf(rs);

 case 11: return isinf(rs) || isnan(rs);

 case 12: return rs != 0;

 case 13: return !isnan(rs);

 case 14: return !isinf(rs);

 case 15: return !isnan(rs) && !isinf(rs);

 };

}

Compare vector elementsvcmp.t

012345678910111213141516171819202122232425262728293031

0 1 1 0 1 1 0 0 0 1 0 0 0 0rt rs cond

Syntax

vcmp.t cond, rs, rt

Description

Performs an element wise comparison specified by the immediate and writes the result

to VFPU_CC. Aggregated `and` and `or` operations are also calculated for convenience.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 8 cycles

Allowed prefixes

rt: Full support (swizzle, abs(), neg() and constants)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

vfpu_cc[0] = comparefn(cond, rs[0], rt[0])

vfpu_cc[1] = comparefn(cond, rs[1], rt[1])

vfpu_cc[2] = comparefn(cond, rs[2], rt[2])

vfpu_cc[4] = vfpu_cc[0] | vfpu_cc[1] | vfpu_cc[2]

vfpu_cc[5] = vfpu_cc[0] & vfpu_cc[1] & vfpu_cc[2]

Used functions

unsigned comparefn(unsigned cond, float rs, float rt) {

 switch (cond) {

 case 0: return 0;

 case 1: return rs == rt;

 case 2: return rs < rt;

 case 3: return rs <= rt;

 case 4: return 1;

 case 5: return rs != rt;

 case 6: return rs >= rt;

•

•

 case 7: return rs > rt;

 case 8: return rs == 0;

 case 9: return isnan(rs);

 case 10: return isinf(rs);

 case 11: return isinf(rs) || isnan(rs);

 case 12: return rs != 0;

 case 13: return !isnan(rs);

 case 14: return !isinf(rs);

 case 15: return !isnan(rs) && !isinf(rs);

 };

}

Compare vector elementsvcmp.q

012345678910111213141516171819202122232425262728293031

0 1 1 0 1 1 0 0 0 1 1 0 0 0rt rs cond

Syntax

vcmp.q cond, rs, rt

Description

Performs an element wise comparison specified by the immediate and writes the result

to VFPU_CC. Aggregated `and` and `or` operations are also calculated for convenience.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 8 cycles

Allowed prefixes

rt: Full support (swizzle, abs(), neg() and constants)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

vfpu_cc[0] = comparefn(cond, rs[0], rt[0])

vfpu_cc[1] = comparefn(cond, rs[1], rt[1])

vfpu_cc[2] = comparefn(cond, rs[2], rt[2])

vfpu_cc[3] = comparefn(cond, rs[3], rt[3])

vfpu_cc[4] = vfpu_cc[0] | vfpu_cc[1] | vfpu_cc[2] | vfpu_cc[3]

vfpu_cc[5] = vfpu_cc[0] & vfpu_cc[1] & vfpu_cc[2] & vfpu_cc[3]

Used functions

unsigned comparefn(unsigned cond, float rs, float rt) {

 switch (cond) {

 case 0: return 0;

 case 1: return rs == rt;

 case 2: return rs < rt;

 case 3: return rs <= rt;

 case 4: return 1;

 case 5: return rs != rt;

•

•

 case 6: return rs >= rt;

 case 7: return rs > rt;

 case 8: return rs == 0;

 case 9: return isnan(rs);

 case 10: return isinf(rs);

 case 11: return isinf(rs) || isnan(rs);

 case 12: return rs != 0;

 case 13: return !isnan(rs);

 case 14: return !isinf(rs);

 case 15: return !isnan(rs) && !isinf(rs);

 };

}

Identity matrix row/col initializevidt.p

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 rd

Syntax

vidt.p rd

Description

Initializes destination register as an identity matrix row (all zeros but one). The behaviour

depends on the destination register number.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 3 cycles

Allowed prefixes

rd: Full support (masking and saturation)•

Identity matrix row/col initializevidt.q

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 rd

Syntax

vidt.q rd

Description

Initializes destination register as an identity matrix row (all zeros but one). The behaviour

depends on the destination register number.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 3 cycles

Allowed prefixes

rd: Full support (masking and saturation)•

Clear vector to zerovzero.s

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 rd

Syntax

vzero.s rd

Description

Writes zeros (0.0f) into the destination register

Instruction performance

Throughput: 1 cycles/instruction

Latency: 3 cycles

Allowed prefixes

rd: Full support (masking and saturation)

Pseudocode

rd[0] = 0

•

Clear vector to zerovzero.p

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 rd

Syntax

vzero.p rd

Description

Writes zeros (0.0f) into the destination register

Instruction performance

Throughput: 1 cycles/instruction

Latency: 3 cycles

Allowed prefixes

rd: Full support (masking and saturation)

Pseudocode

rd[0] = 0

rd[1] = 0

•

Clear vector to zerovzero.t

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 rd

Syntax

vzero.t rd

Description

Writes zeros (0.0f) into the destination register

Instruction performance

Throughput: 1 cycles/instruction

Latency: 3 cycles

Allowed prefixes

rd: Full support (masking and saturation)

Pseudocode

rd[0] = 0

rd[1] = 0

rd[2] = 0

•

Clear vector to zerovzero.q

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 1 rd

Syntax

vzero.q rd

Description

Writes zeros (0.0f) into the destination register

Instruction performance

Throughput: 1 cycles/instruction

Latency: 3 cycles

Allowed prefixes

rd: Full support (masking and saturation)

Pseudocode

rd[0] = 0

rd[1] = 0

rd[2] = 0

rd[3] = 0

•

Clear vector to onevone.s

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 rd

Syntax

vone.s rd

Description

Writes ones (1.0f) into the destination register

Instruction performance

Throughput: 1 cycles/instruction

Latency: 3 cycles

Allowed prefixes

rd: Full support (masking and saturation)

Pseudocode

rd[0] = 1.0f

•

Clear vector to onevone.p

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 rd

Syntax

vone.p rd

Description

Writes ones (1.0f) into the destination register

Instruction performance

Throughput: 1 cycles/instruction

Latency: 3 cycles

Allowed prefixes

rd: Full support (masking and saturation)

Pseudocode

rd[0] = 1.0f

rd[1] = 1.0f

•

Clear vector to onevone.t

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 rd

Syntax

vone.t rd

Description

Writes ones (1.0f) into the destination register

Instruction performance

Throughput: 1 cycles/instruction

Latency: 3 cycles

Allowed prefixes

rd: Full support (masking and saturation)

Pseudocode

rd[0] = 1.0f

rd[1] = 1.0f

rd[2] = 1.0f

•

Clear vector to onevone.q

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 rd

Syntax

vone.q rd

Description

Writes ones (1.0f) into the destination register

Instruction performance

Throughput: 1 cycles/instruction

Latency: 3 cycles

Allowed prefixes

rd: Full support (masking and saturation)

Pseudocode

rd[0] = 1.0f

rd[1] = 1.0f

rd[2] = 1.0f

rd[3] = 1.0f

•

Random seedvrnds.s

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0rs

Syntax

vrnds.s rs

Description

Uses the integer value as a seed for the pseudorandom number generator.

Allowed prefixes

rs: Not supported•

Random integervrndi.s

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 rd

Syntax

vrndi.s rd

Description

Writes pseudorandom 32 bit numbers to the destination elements (full 32bit range)

Instruction performance

Throughput: 3 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rd: Full support (masking and saturation)•

Random integervrndi.p

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 rd

Syntax

vrndi.p rd

Description

Writes pseudorandom 32 bit numbers to the destination elements (full 32bit range)

Instruction performance

Throughput: 6 cycles/instruction

Latency: 8 cycles

Allowed prefixes

rd: Not supported•

Random integervrndi.t

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 rd

Syntax

vrndi.t rd

Description

Writes pseudorandom 32 bit numbers to the destination elements (full 32bit range)

Instruction performance

Throughput: 9 cycles/instruction

Latency: 11 cycles

Allowed prefixes

rd: Not supported•

Random integervrndi.q

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 1 rd

Syntax

vrndi.q rd

Description

Writes pseudorandom 32 bit numbers to the destination elements (full 32bit range)

Instruction performance

Throughput: 12 cycles/instruction

Latency: 14 cycles

Allowed prefixes

rd: Not supported•

Random float in [1..2] rangevrndf1.s

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 rd

Syntax

vrndf1.s rd

Description

Writes pseudorandom numbers to the destination elements so that each element (x) can

assert 1.0f <= x < 2.0f

Instruction performance

Throughput: 3 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rd: Full support (masking and saturation)•

Random float in [1..2] rangevrndf1.p

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 rd

Syntax

vrndf1.p rd

Description

Writes pseudorandom numbers to the destination elements so that each element (x) can

assert 1.0f <= x < 2.0f

Instruction performance

Throughput: 6 cycles/instruction

Latency: 8 cycles

Allowed prefixes

rd: Not supported•

Random float in [1..2] rangevrndf1.t

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 rd

Syntax

vrndf1.t rd

Description

Writes pseudorandom numbers to the destination elements so that each element (x) can

assert 1.0f <= x < 2.0f

Instruction performance

Throughput: 9 cycles/instruction

Latency: 11 cycles

Allowed prefixes

rd: Not supported•

Random float in [1..2] rangevrndf1.q

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 1 rd

Syntax

vrndf1.q rd

Description

Writes pseudorandom numbers to the destination elements so that each element (x) can

assert 1.0f <= x < 2.0f

Instruction performance

Throughput: 12 cycles/instruction

Latency: 14 cycles

Allowed prefixes

rd: Not supported•

Random float in [2..4] rangevrndf2.s

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 rd

Syntax

vrndf2.s rd

Description

Writes pseudorandom numbers to the destination elements so that each element (x) can

assert 2.0f <= x < 4.0f

Instruction performance

Throughput: 3 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rd: Full support (masking and saturation)•

Random float in [2..4] rangevrndf2.p

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 1 rd

Syntax

vrndf2.p rd

Description

Writes pseudorandom numbers to the destination elements so that each element (x) can

assert 2.0f <= x < 4.0f

Instruction performance

Throughput: 6 cycles/instruction

Latency: 8 cycles

Allowed prefixes

rd: Not supported•

Random float in [2..4] rangevrndf2.t

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 rd

Syntax

vrndf2.t rd

Description

Writes pseudorandom numbers to the destination elements so that each element (x) can

assert 2.0f <= x < 4.0f

Instruction performance

Throughput: 9 cycles/instruction

Latency: 11 cycles

Allowed prefixes

rd: Not supported•

Random float in [2..4] rangevrndf2.q

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 1 rd

Syntax

vrndf2.q rd

Description

Writes pseudorandom numbers to the destination elements so that each element (x) can

assert 2.0f <= x < 4.0f

Instruction performance

Throughput: 12 cycles/instruction

Latency: 14 cycles

Allowed prefixes

rd: Not supported•

Matrix by matrix multiplicationvmmul.p

012345678910111213141516171819202122232425262728293031

1 1 1 1 0 0 0 0 0 0 1rt rs rd

Syntax

vmmul.p rd, rs, rt

Description

Performs a matrix multiplication

Instruction performance

Throughput: 4 cycles/instruction

Latency: 10 cycles

Register overlap compatibility

Output register cannot overlap with input registers

Allowed prefixes

rs: Not supported

rd: Not supported

rt: Not supported

Pseudocode

rd[0] = rs[0] * rt[0] + rs[1] * rt[1]

rd[1] = rs[2] * rt[0] + rs[3] * rt[1]

rd[2] = rs[0] * rt[2] + rs[1] * rt[3]

rd[3] = rs[2] * rt[2] + rs[3] * rt[3]

•

•

•

Matrix by matrix multiplicationvmmul.t

012345678910111213141516171819202122232425262728293031

1 1 1 1 0 0 0 0 0 1 0rt rs rd

Syntax

vmmul.t rd, rs, rt

Description

Performs a matrix multiplication

Instruction performance

Throughput: 9 cycles/instruction

Latency: 15 cycles

Register overlap compatibility

Output register cannot overlap with input registers

Allowed prefixes

rs: Not supported

rd: Not supported

rt: Not supported

Pseudocode

rd[0] = rs[0] * rt[0] + rs[1] * rt[1] + rs[2] * rt[2]

rd[1] = rs[3] * rt[0] + rs[4] * rt[1] + rs[5] * rt[2]

rd[2] = rs[6] * rt[0] + rs[7] * rt[1] + rs[8] * rt[2]

rd[3] = rs[0] * rt[3] + rs[1] * rt[4] + rs[2] * rt[5]

rd[4] = rs[3] * rt[3] + rs[4] * rt[4] + rs[5] * rt[5]

rd[5] = rs[6] * rt[3] + rs[7] * rt[4] + rs[8] * rt[5]

rd[6] = rs[0] * rt[6] + rs[1] * rt[7] + rs[2] * rt[8]

rd[7] = rs[3] * rt[6] + rs[4] * rt[7] + rs[5] * rt[8]

rd[8] = rs[6] * rt[6] + rs[7] * rt[7] + rs[8] * rt[8]

•

•

•

Matrix by matrix multiplicationvmmul.q

012345678910111213141516171819202122232425262728293031

1 1 1 1 0 0 0 0 0 1 1rt rs rd

Syntax

vmmul.q rd, rs, rt

Description

Performs a matrix multiplication

Instruction performance

Throughput: 16 cycles/instruction

Latency: 22 cycles

Register overlap compatibility

Output register cannot overlap with input registers

Allowed prefixes

rs: Not supported

rd: Not supported

rt: Not supported

Pseudocode

rd[0] = rs[0] * rt[0] + rs[1] * rt[1] + rs[2] * rt[2] + rs[3] * rt[3]

rd[1] = rs[4] * rt[0] + rs[5] * rt[1] + rs[6] * rt[2] + rs[7] * rt[3]

rd[2] = rs[8] * rt[0] + rs[9] * rt[1] + rs[10] * rt[2] + rs[11] * rt[3]

rd[3] = rs[12] * rt[0] + rs[13] * rt[1] + rs[14] * rt[2] + rs[15] * rt[3]

rd[4] = rs[0] * rt[4] + rs[1] * rt[5] + rs[2] * rt[6] + rs[3] * rt[7]

rd[5] = rs[4] * rt[4] + rs[5] * rt[5] + rs[6] * rt[6] + rs[7] * rt[7]

rd[6] = rs[8] * rt[4] + rs[9] * rt[5] + rs[10] * rt[6] + rs[11] * rt[7]

rd[7] = rs[12] * rt[4] + rs[13] * rt[5] + rs[14] * rt[6] + rs[15] * rt[7]

rd[8] = rs[0] * rt[8] + rs[1] * rt[9] + rs[2] * rt[10] + rs[3] * rt[11]

rd[9] = rs[4] * rt[8] + rs[5] * rt[9] + rs[6] * rt[10] + rs[7] * rt[11]

rd[10] = rs[8] * rt[8] + rs[9] * rt[9] + rs[10] * rt[10] + rs[11] * rt[11]

rd[11] = rs[12] * rt[8] + rs[13] * rt[9] + rs[14] * rt[10] + rs[15] * rt[11]

rd[12] = rs[0] * rt[12] + rs[1] * rt[13] + rs[2] * rt[14] + rs[3] * rt[15]

rd[13] = rs[4] * rt[12] + rs[5] * rt[13] + rs[6] * rt[14] + rs[7] * rt[15]

•

•

•

rd[14] = rs[8] * rt[12] + rs[9] * rt[13] + rs[10] * rt[14] + rs[11] * rt[15]

rd[15] = rs[12] * rt[12] + rs[13] * rt[13] + rs[14] * rt[14] + rs[15] * rt[15]

Matrix scale by single factorvmscl.p

012345678910111213141516171819202122232425262728293031

1 1 1 1 0 0 1 0 0 0 1rt rs rd

Syntax

vmscl.p rd, rs, rt

Description

Performs a matrix scaling by a single factor

Instruction performance

Throughput: 2 cycles/instruction

Latency: 6 cycles

Register overlap compatibility

Output register can only overlap with input registers if they are identical

Allowed prefixes

rs: Not supported

rd: Not supported

rt: Not supported

Pseudocode

rd[0] = rs[0] * rt[0]

rd[1] = rs[1] * rt[0]

rd[2] = rs[2] * rt[0]

rd[3] = rs[3] * rt[0]

•

•

•

Matrix scale by single factorvmscl.t

012345678910111213141516171819202122232425262728293031

1 1 1 1 0 0 1 0 0 1 0rt rs rd

Syntax

vmscl.t rd, rs, rt

Description

Performs a matrix scaling by a single factor

Instruction performance

Throughput: 3 cycles/instruction

Latency: 7 cycles

Register overlap compatibility

Output register can only overlap with input registers if they are identical

Allowed prefixes

rs: Not supported

rd: Not supported

rt: Not supported

Pseudocode

rd[0] = rs[0] * rt[0]

rd[1] = rs[1] * rt[0]

rd[2] = rs[2] * rt[0]

rd[3] = rs[3] * rt[0]

rd[4] = rs[4] * rt[0]

rd[5] = rs[5] * rt[0]

rd[6] = rs[6] * rt[0]

rd[7] = rs[7] * rt[0]

rd[8] = rs[8] * rt[0]

•

•

•

Matrix scale by single factorvmscl.q

012345678910111213141516171819202122232425262728293031

1 1 1 1 0 0 1 0 0 1 1rt rs rd

Syntax

vmscl.q rd, rs, rt

Description

Performs a matrix scaling by a single factor

Instruction performance

Throughput: 4 cycles/instruction

Latency: 8 cycles

Register overlap compatibility

Output register can only overlap with input registers if they are identical

Allowed prefixes

rs: Not supported

rd: Not supported

rt: Not supported

Pseudocode

rd[0] = rs[0] * rt[0]

rd[1] = rs[1] * rt[0]

rd[2] = rs[2] * rt[0]

rd[3] = rs[3] * rt[0]

rd[4] = rs[4] * rt[0]

rd[5] = rs[5] * rt[0]

rd[6] = rs[6] * rt[0]

rd[7] = rs[7] * rt[0]

rd[8] = rs[8] * rt[0]

rd[9] = rs[9] * rt[0]

rd[10] = rs[10] * rt[0]

rd[11] = rs[11] * rt[0]

rd[12] = rs[12] * rt[0]

rd[13] = rs[13] * rt[0]

•

•

•

rd[14] = rs[14] * rt[0]

rd[15] = rs[15] * rt[0]

Copy matrixvmmov.p

012345678910111213141516171819202122232425262728293031

1 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 1rs rd

Syntax

vmmov.p rd, rs

Description

Element-wise data copy

Instruction performance

Throughput: 2 cycles/instruction

Latency: 4 cycles

Register overlap compatibility

Output register can only overlap with input registers if they are identical

Allowed prefixes

rs: Not supported

rd: Not supported

Pseudocode

rd[0] = rs[0]

rd[1] = rs[1]

rd[2] = rs[2]

rd[3] = rs[3]

•

•

Copy matrixvmmov.t

012345678910111213141516171819202122232425262728293031

1 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 1 0rs rd

Syntax

vmmov.t rd, rs

Description

Element-wise data copy

Instruction performance

Throughput: 3 cycles/instruction

Latency: 5 cycles

Register overlap compatibility

Output register can only overlap with input registers if they are identical

Allowed prefixes

rs: Not supported

rd: Not supported

Pseudocode

rd[0] = rs[0]

rd[1] = rs[1]

rd[2] = rs[2]

rd[3] = rs[3]

rd[4] = rs[4]

rd[5] = rs[5]

rd[6] = rs[6]

rd[7] = rs[7]

rd[8] = rs[8]

•

•

Copy matrixvmmov.q

012345678910111213141516171819202122232425262728293031

1 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 1 1rs rd

Syntax

vmmov.q rd, rs

Description

Element-wise data copy

Instruction performance

Throughput: 4 cycles/instruction

Latency: 6 cycles

Register overlap compatibility

Output register can only overlap with input registers if they are identical

Allowed prefixes

rs: Not supported

rd: Not supported

Pseudocode

rd[0] = rs[0]

rd[1] = rs[1]

rd[2] = rs[2]

rd[3] = rs[3]

rd[4] = rs[4]

rd[5] = rs[5]

rd[6] = rs[6]

rd[7] = rs[7]

rd[8] = rs[8]

rd[9] = rs[9]

rd[10] = rs[10]

rd[11] = rs[11]

rd[12] = rs[12]

rd[13] = rs[13]

•

•

rd[14] = rs[14]

rd[15] = rs[15]

Set matrix to identityvmidt.p

012345678910111213141516171819202122232425262728293031

1 1 1 1 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 rd

Syntax

vmidt.p rd

Description

Writes the identity matrix into the destination register

Instruction performance

Throughput: 2 cycles/instruction

Latency: 4 cycles

Allowed prefixes

rd: Not supported

Pseudocode

rd[0] = 1f

rd[1] = 0f

rd[2] = 0f

rd[3] = 1f

•

Set matrix to identityvmidt.t

012345678910111213141516171819202122232425262728293031

1 1 1 1 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 rd

Syntax

vmidt.t rd

Description

Writes the identity matrix into the destination register

Instruction performance

Throughput: 3 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rd: Not supported

Pseudocode

rd[0] = 1f

rd[1] = 0f

rd[2] = 0f

rd[3] = 0f

rd[4] = 1f

rd[5] = 0f

rd[6] = 0f

rd[7] = 0f

rd[8] = 1f

•

Set matrix to identityvmidt.q

012345678910111213141516171819202122232425262728293031

1 1 1 1 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 rd

Syntax

vmidt.q rd

Description

Writes the identity matrix into the destination register

Instruction performance

Throughput: 4 cycles/instruction

Latency: 6 cycles

Allowed prefixes

rd: Not supported

Pseudocode

rd[0] = 1f

rd[1] = 0f

rd[2] = 0f

rd[3] = 0f

rd[4] = 0f

rd[5] = 1f

rd[6] = 0f

rd[7] = 0f

rd[8] = 0f

rd[9] = 0f

rd[10] = 1f

rd[11] = 0f

rd[12] = 0f

rd[13] = 0f

rd[14] = 0f

rd[15] = 1f

•

Clear matrix to zerovmzero.p

012345678910111213141516171819202122232425262728293031

1 1 1 1 0 0 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 rd

Syntax

vmzero.p rd

Description

Writes a zero matrix into the destination register

Instruction performance

Throughput: 2 cycles/instruction

Latency: 4 cycles

Allowed prefixes

rd: Not supported

Pseudocode

rd[0] = 0

rd[1] = 0

rd[2] = 0

rd[3] = 0

•

Clear matrix to zerovmzero.t

012345678910111213141516171819202122232425262728293031

1 1 1 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 rd

Syntax

vmzero.t rd

Description

Writes a zero matrix into the destination register

Instruction performance

Throughput: 3 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rd: Not supported

Pseudocode

rd[0] = 0

rd[1] = 0

rd[2] = 0

rd[3] = 0

rd[4] = 0

rd[5] = 0

rd[6] = 0

rd[7] = 0

rd[8] = 0

•

Clear matrix to zerovmzero.q

012345678910111213141516171819202122232425262728293031

1 1 1 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 1 rd

Syntax

vmzero.q rd

Description

Writes a zero matrix into the destination register

Instruction performance

Throughput: 4 cycles/instruction

Latency: 6 cycles

Allowed prefixes

rd: Not supported

Pseudocode

rd[0] = 0

rd[1] = 0

rd[2] = 0

rd[3] = 0

rd[4] = 0

rd[5] = 0

rd[6] = 0

rd[7] = 0

rd[8] = 0

rd[9] = 0

rd[10] = 0

rd[11] = 0

rd[12] = 0

rd[13] = 0

rd[14] = 0

rd[15] = 0

•

Clear matrix to onevmone.p

012345678910111213141516171819202122232425262728293031

1 1 1 1 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 rd

Syntax

vmone.p rd

Description

Overwrites all elements in a matrix with ones (1.0f)

Instruction performance

Throughput: 2 cycles/instruction

Latency: 4 cycles

Allowed prefixes

rd: Not supported

Pseudocode

rd[0] = 1

rd[1] = 1

rd[2] = 1

rd[3] = 1

•

Clear matrix to onevmone.t

012345678910111213141516171819202122232425262728293031

1 1 1 1 0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 rd

Syntax

vmone.t rd

Description

Overwrites all elements in a matrix with ones (1.0f)

Instruction performance

Throughput: 3 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rd: Not supported

Pseudocode

rd[0] = 1

rd[1] = 1

rd[2] = 1

rd[3] = 1

rd[4] = 1

rd[5] = 1

rd[6] = 1

rd[7] = 1

rd[8] = 1

•

Clear matrix to onevmone.q

012345678910111213141516171819202122232425262728293031

1 1 1 1 0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 rd

Syntax

vmone.q rd

Description

Overwrites all elements in a matrix with ones (1.0f)

Instruction performance

Throughput: 4 cycles/instruction

Latency: 6 cycles

Allowed prefixes

rd: Not supported

Pseudocode

rd[0] = 1

rd[1] = 1

rd[2] = 1

rd[3] = 1

rd[4] = 1

rd[5] = 1

rd[6] = 1

rd[7] = 1

rd[8] = 1

rd[9] = 1

rd[10] = 1

rd[11] = 1

rd[12] = 1

rd[13] = 1

rd[14] = 1

rd[15] = 1

•

Vector by matrix transformvtfm2.p

012345678910111213141516171819202122232425262728293031

1 1 1 1 0 0 0 0 1 0 1rt rs rd

Syntax

vtfm2.p rd, rs, rt

Description

Performs a vector-matrix transform (matrix-vector product), with a vector result

Instruction performance

Throughput: 2 cycles/instruction

Latency: 8 cycles

Register overlap compatibility

Output register cannot overlap with input registers

Allowed prefixes

rs: Not supported

rd: Not supported

rt: Not supported

Pseudocode

rd[0] = rs[0] * rt[0] + rs[1] * rt[1]

rd[1] = rs[2] * rt[0] + rs[3] * rt[1]

•

•

•

Vector by matrix transformvtfm3.t

012345678910111213141516171819202122232425262728293031

1 1 1 1 0 0 0 1 0 1 0rt rs rd

Syntax

vtfm3.t rd, rs, rt

Description

Performs a vector-matrix transform (matrix-vector product), with a vector result

Instruction performance

Throughput: 3 cycles/instruction

Latency: 9 cycles

Register overlap compatibility

Output register cannot overlap with input registers

Allowed prefixes

rs: Not supported

rd: Not supported

rt: Not supported

Pseudocode

rd[0] = rs[0] * rt[0] + rs[1] * rt[1] + rs[2] * rt[2]

rd[1] = rs[3] * rt[0] + rs[4] * rt[1] + rs[5] * rt[2]

rd[2] = rs[6] * rt[0] + rs[7] * rt[1] + rs[8] * rt[2]

•

•

•

Vector by matrix transformvtfm4.q

012345678910111213141516171819202122232425262728293031

1 1 1 1 0 0 0 1 1 1 1rt rs rd

Syntax

vtfm4.q rd, rs, rt

Description

Performs a vector-matrix transform (matrix-vector product), with a vector result

Instruction performance

Throughput: 4 cycles/instruction

Latency: 10 cycles

Register overlap compatibility

Output register cannot overlap with input registers

Allowed prefixes

rs: Not supported

rd: Not supported

rt: Not supported

Pseudocode

rd[0] = rs[0] * rt[0] + rs[1] * rt[1] + rs[2] * rt[2] + rs[3] * rt[3]

rd[1] = rs[4] * rt[0] + rs[5] * rt[1] + rs[6] * rt[2] + rs[7] * rt[3]

rd[2] = rs[8] * rt[0] + rs[9] * rt[1] + rs[10] * rt[2] + rs[11] * rt[3]

rd[3] = rs[12] * rt[0] + rs[13] * rt[1] + rs[14] * rt[2] + rs[15] * rt[3]

•

•

•

Vector by matrix homogeneous transformvhtfm2.p

012345678910111213141516171819202122232425262728293031

1 1 1 1 0 0 0 0 1 0 0rt rs rd

Syntax

vhtfm2.p rd, rs, rt

Description

Performs a vector-matrix homogeneous transform (matrix-vector product), with a vector

result

Bugs

Whenever the used output register rd is 64 or above the output is incorrect. The result is

rotated left by one position around the 4-element register (row or column). Check vfpu-

bugs.c for more information and examples.

Instruction performance

Throughput: 2 cycles/instruction

Latency: 8 cycles

Register overlap compatibility

Output register cannot overlap with input registers

Allowed prefixes

rs: Not supported

rd: Not supported

rt: Not supported

Pseudocode

rd[0] = rs[0] * rt[0] + rs[1]

rd[1] = rs[2] * rt[0] + rs[3]

•

•

•

Vector by matrix homogeneous transformvhtfm3.t

012345678910111213141516171819202122232425262728293031

1 1 1 1 0 0 0 1 0 0 1rt rs rd

Syntax

vhtfm3.t rd, rs, rt

Description

Performs a vector-matrix homogeneous transform (matrix-vector product), with a vector

result

Bugs

Whenever the used output register rd is 64 or above the output is incorrect. The result is

rotated left by two position around the 4-element register (row or column). Check vfpu-

bugs.c for more information and examples.

Instruction performance

Throughput: 3 cycles/instruction

Latency: 9 cycles

Register overlap compatibility

Output register cannot overlap with input registers

Allowed prefixes

rs: Not supported

rd: Not supported

rt: Not supported

Pseudocode

rd[0] = rs[0] * rt[0] + rs[1] * rt[1] + rs[2]

rd[1] = rs[3] * rt[0] + rs[4] * rt[1] + rs[5]

rd[2] = rs[6] * rt[0] + rs[7] * rt[1] + rs[8]

•

•

•

Vector by matrix homogeneous transformvhtfm4.q

012345678910111213141516171819202122232425262728293031

1 1 1 1 0 0 0 1 1 1 0rt rs rd

Syntax

vhtfm4.q rd, rs, rt

Description

Performs a vector-matrix homogeneous transform (matrix-vector product), with a vector

result

Instruction performance

Throughput: 4 cycles/instruction

Latency: 10 cycles

Register overlap compatibility

Output register cannot overlap with input registers

Allowed prefixes

rs: Not supported

rd: Not supported

rt: Not supported

Pseudocode

rd[0] = rs[0] * rt[0] + rs[1] * rt[1] + rs[2] * rt[2] + rs[3]

rd[1] = rs[4] * rt[0] + rs[5] * rt[1] + rs[6] * rt[2] + rs[7]

rd[2] = rs[8] * rt[0] + rs[9] * rt[1] + rs[10] * rt[2] + rs[11]

rd[3] = rs[12] * rt[0] + rs[13] * rt[1] + rs[14] * rt[2] + rs[15]

•

•

•

Conditional move (false)vcmovf.s

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 1 0 1 0 1 0 1 0 0cc rs rd

Syntax

vcmovf.s rd, rs, imm3

Description

Performs a register move operation (like vmov) conditional to a VFPU_CC bit being

zero. If imm3 has the special value of 6, each vector lane will check its corresponding bit

instead. This can be used to conditionally move each of the elements based on, for

instance, a vcmp operation. A value of 7 in imm3 is not specified.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rs: Full support (swizzle, abs(), neg() and constants)

rd: Not supported

Pseudocode

rd[0] = (cc == 6) ? (vfpu_cc[0] ? rd[0] : rs[0]) : (vfpu_cc[cc] ? rd[0] : rs[0])

•

•

Conditional move (false)vcmovf.t

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 1 0 1 0 1 0 1 1 0cc rs rd

Syntax

vcmovf.t rd, rs, imm3

Description

Performs a register move operation (like vmov) conditional to a VFPU_CC bit being

zero. If imm3 has the special value of 6, each vector lane will check its corresponding bit

instead. This can be used to conditionally move each of the elements based on, for

instance, a vcmp operation. A value of 7 in imm3 is not specified.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rs: Full support (swizzle, abs(), neg() and constants)

rd: Not supported

Pseudocode

rd[0] = (cc == 6) ? (vfpu_cc[0] ? rd[0] : rs[0]) : (vfpu_cc[cc] ? rd[0] : rs[0])

rd[1] = (cc == 6) ? (vfpu_cc[1] ? rd[1] : rs[1]) : (vfpu_cc[cc] ? rd[1] : rs[1])

rd[2] = (cc == 6) ? (vfpu_cc[2] ? rd[2] : rs[2]) : (vfpu_cc[cc] ? rd[2] : rs[2])

•

•

Conditional move (false)vcmovf.p

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 1 0 1 0 1 0 1 0 1cc rs rd

Syntax

vcmovf.p rd, rs, imm3

Description

Performs a register move operation (like vmov) conditional to a VFPU_CC bit being

zero. If imm3 has the special value of 6, each vector lane will check its corresponding bit

instead. This can be used to conditionally move each of the elements based on, for

instance, a vcmp operation. A value of 7 in imm3 is not specified.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rs: Full support (swizzle, abs(), neg() and constants)

rd: Not supported

Pseudocode

rd[0] = (cc == 6) ? (vfpu_cc[0] ? rd[0] : rs[0]) : (vfpu_cc[cc] ? rd[0] : rs[0])

rd[1] = (cc == 6) ? (vfpu_cc[1] ? rd[1] : rs[1]) : (vfpu_cc[cc] ? rd[1] : rs[1])

•

•

Conditional move (false)vcmovf.q

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 1 0 1 0 1 0 1 1 1cc rs rd

Syntax

vcmovf.q rd, rs, imm3

Description

Performs a register move operation (like vmov) conditional to a VFPU_CC bit being

zero. If imm3 has the special value of 6, each vector lane will check its corresponding bit

instead. This can be used to conditionally move each of the elements based on, for

instance, a vcmp operation. A value of 7 in imm3 is not specified.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rs: Full support (swizzle, abs(), neg() and constants)

rd: Not supported

Pseudocode

rd[0] = (cc == 6) ? (vfpu_cc[0] ? rd[0] : rs[0]) : (vfpu_cc[cc] ? rd[0] : rs[0])

rd[1] = (cc == 6) ? (vfpu_cc[1] ? rd[1] : rs[1]) : (vfpu_cc[cc] ? rd[1] : rs[1])

rd[2] = (cc == 6) ? (vfpu_cc[2] ? rd[2] : rs[2]) : (vfpu_cc[cc] ? rd[2] : rs[2])

rd[3] = (cc == 6) ? (vfpu_cc[3] ? rd[3] : rs[3]) : (vfpu_cc[cc] ? rd[3] : rs[3])

•

•

Conditional move (true)vcmovt.s

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 1 0 1 0 1 0 0 0 0cc rs rd

Syntax

vcmovt.s rd, rs, imm3

Description

Performs a register move operation (like vmov) conditional to a VFPU_CC bit being one.

If imm3 has the special value of 6, each vector lane will check its corresponding bit

instead. This can be used to conditionally move each of the elements based on, for

instance, a vcmp operation. A value of 7 in imm3 is not specified.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rs: Full support (swizzle, abs(), neg() and constants)

rd: Not supported

Pseudocode

rd[0] = (cc == 6) ? (vfpu_cc[0] ? rs[0] : rd[0]) : (vfpu_cc[cc] ? rs[0] : rd[0])

•

•

Conditional move (true)vcmovt.t

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 1 0 1 0 1 0 0 1 0cc rs rd

Syntax

vcmovt.t rd, rs, imm3

Description

Performs a register move operation (like vmov) conditional to a VFPU_CC bit being one.

If imm3 has the special value of 6, each vector lane will check its corresponding bit

instead. This can be used to conditionally move each of the elements based on, for

instance, a vcmp operation. A value of 7 in imm3 is not specified.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rs: Full support (swizzle, abs(), neg() and constants)

rd: Not supported

Pseudocode

rd[0] = (cc == 6) ? (vfpu_cc[0] ? rs[0] : rd[0]) : (vfpu_cc[cc] ? rs[0] : rd[0])

rd[1] = (cc == 6) ? (vfpu_cc[1] ? rs[1] : rd[1]) : (vfpu_cc[cc] ? rs[1] : rd[1])

rd[2] = (cc == 6) ? (vfpu_cc[2] ? rs[2] : rd[2]) : (vfpu_cc[cc] ? rs[2] : rd[2])

•

•

Conditional move (true)vcmovt.p

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 1 0 1 0 1 0 0 0 1cc rs rd

Syntax

vcmovt.p rd, rs, imm3

Description

Performs a register move operation (like vmov) conditional to a VFPU_CC bit being one.

If imm3 has the special value of 6, each vector lane will check its corresponding bit

instead. This can be used to conditionally move each of the elements based on, for

instance, a vcmp operation. A value of 7 in imm3 is not specified.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rs: Full support (swizzle, abs(), neg() and constants)

rd: Not supported

Pseudocode

rd[0] = (cc == 6) ? (vfpu_cc[0] ? rs[0] : rd[0]) : (vfpu_cc[cc] ? rs[0] : rd[0])

rd[1] = (cc == 6) ? (vfpu_cc[1] ? rs[1] : rd[1]) : (vfpu_cc[cc] ? rs[1] : rd[1])

•

•

Conditional move (true)vcmovt.q

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 1 0 1 0 1 0 0 1 1cc rs rd

Syntax

vcmovt.q rd, rs, imm3

Description

Performs a register move operation (like vmov) conditional to a VFPU_CC bit being one.

If imm3 has the special value of 6, each vector lane will check its corresponding bit

instead. This can be used to conditionally move each of the elements based on, for

instance, a vcmp operation. A value of 7 in imm3 is not specified.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rs: Full support (swizzle, abs(), neg() and constants)

rd: Not supported

Pseudocode

rd[0] = (cc == 6) ? (vfpu_cc[0] ? rs[0] : rd[0]) : (vfpu_cc[cc] ? rs[0] : rd[0])

rd[1] = (cc == 6) ? (vfpu_cc[1] ? rs[1] : rd[1]) : (vfpu_cc[cc] ? rs[1] : rd[1])

rd[2] = (cc == 6) ? (vfpu_cc[2] ? rs[2] : rd[2]) : (vfpu_cc[cc] ? rs[2] : rd[2])

rd[3] = (cc == 6) ? (vfpu_cc[3] ? rs[3] : rd[3]) : (vfpu_cc[cc] ? rs[3] : rd[3])

•

•

Pack integer to unsigned charvi2uc.q

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 1 1 1 1 0 0 1 1rs rd

Syntax

vi2uc.q rd, rs

Description

Converts the four integer inputs to char and packs them as a single element word. The

conversion process takes the 8 most significant bits of each integer and clamps any

negative input values to zero.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 3 cycles

Allowed prefixes

rd: Partial support (masking only)

rs: Partial support (swizzle only)

Pseudocode

rd[0] = (rs[0] & 0x80000000 ? 0 : ((rs[0] >> 23))) | (rs[1] & 0x80000000 ? 0 : ((rs[1]

>> 23) << 8)) | (rs[2] & 0x80000000 ? 0 : ((rs[2] >> 23) << 16)) | (rs[3] &

0x80000000 ? 0 : ((rs[3] >> 23) << 24))

•

•

Pack integer to charvi2c.q

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 1 1 1 1 0 1 1 1rs rd

Syntax

vi2c.q rd, rs

Description

Converts the four integer inputs to char and packs them as a single element word. The

conversion process takes the 8 most significant bits of each integer.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 3 cycles

Allowed prefixes

rd: Partial support (masking only)

rs: Partial support (swizzle only)

Pseudocode

rd[0] = ((rs[0] >> 24)) | ((rs[1] >> 24) << 8) | ((rs[2] >> 24) << 16) | ((rs[3] >>

24) << 24)

•

•

Pack integer to unsigned shortvi2us.p

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 1 1 1 1 1 0 0 1rs rd

Syntax

vi2us.p rd, rs

Description

Converts the integer inputs to short and packs them in pairs in the output register. The

conversion process takes the 16 most significant bits of each integer and clamps any

negative input values to zero.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 3 cycles

Allowed prefixes

rd: Partial support (masking only)

rs: Partial support (swizzle only)

Pseudocode

rd[0] = (rs[0] & 0x80000000 ? 0 : ((rs[0] >> 15))) | (rs[1] & 0x80000000 ? 0 : ((rs[1]

>> 15) << 16))

•

•

Pack integer to unsigned shortvi2us.q

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 1 1 1 1 1 0 1 1rs rd

Syntax

vi2us.q rd, rs

Description

Converts the integer inputs to short and packs them in pairs in the output register. The

conversion process takes the 16 most significant bits of each integer and clamps any

negative input values to zero.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 3 cycles

Allowed prefixes

rd: Partial support (masking only)

rs: Partial support (swizzle only)

Pseudocode

rd[0] = (rs[0] & 0x80000000 ? 0 : ((rs[0] >> 15))) | (rs[1] & 0x80000000 ? 0 : ((rs[1]

>> 15) << 16))

rd[1] = (rs[2] & 0x80000000 ? 0 : ((rs[2] >> 15))) | (rs[3] & 0x80000000 ? 0 : ((rs[3]

>> 15) << 16))

•

•

Pack integer to shortvi2s.p

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 1 1 1 1 1 1 0 1rs rd

Syntax

vi2s.p rd, rs

Description

Converts the integer inputs to short and packs them in pairs in the output register. The

conversion process takes the 16 most significant bits of each integer.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 3 cycles

Allowed prefixes

rd: Partial support (masking only)

rs: Partial support (swizzle only)

Pseudocode

rd[0] = ((rs[0] >> 16)) | ((rs[1] >> 16) << 16)

•

•

Pack integer to shortvi2s.q

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1rs rd

Syntax

vi2s.q rd, rs

Description

Converts the integer inputs to short and packs them in pairs in the output register. The

conversion process takes the 16 most significant bits of each integer.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 3 cycles

Allowed prefixes

rd: Partial support (masking only)

rs: Partial support (swizzle only)

Pseudocode

rd[0] = ((rs[0] >> 16)) | ((rs[1] >> 16) << 16)

rd[1] = ((rs[2] >> 16)) | ((rs[3] >> 16) << 16)

•

•

Pack float to float16vf2h.p

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 1rs rd

Syntax

vf2h.p rd, rs

Description

Converts the float inputs to float16 (half-float) and packs them in pairs in the output

register. The conversion process may naturally result in precision loss.

Notes

The conversion discards the most significant mantissa bits. This can affect NaN

encoding.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rd: Partial support (masking only)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = (ifloat32(rs[0])) | (ifloat32(rs[1]) << 16)

Used functions

uint16_t ifloat32(uint32_t fp32) {

 uint16_t exponent = (fp32 >> 23) & 0xFF;

 uint32_t mantissa = (fp32 & 0x7FFFFF);

 uint16_t sign = (fp32 >> 16) & 0x8000;

 if (!exponent)

 return sign; // Denormals rounded to zero

•

•

 if (exponent == 255) {

 // Inf/Nan case

 // Note: there's a bug around NaN conversion,

 // sometimes a NaN will be converted to Inf depending on the mantissa

 // (ie. 0x7ffff000 is a NaN but will be converted to +Inf)

 exponent = 31;

 mantissa &= 0x3FF;

 }

 else if (exponent <= 112) {

 // Too small to be represented (or zero or subnormal)

 mantissa = 0;

 exponent = 0;

 }

 else if (exponent >= 143) {

 // Too big to be represented (map to inf)

 mantissa = 0;

 exponent = 31;

 }

 else {

 // Convert with mantissa precision loss

 exponent -= 127 - 15;

 mantissa >>= 13;

 }

 return sign | (exponent << 10) | mantissa;

}

Pack float to float16vf2h.q

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 1 1rs rd

Syntax

vf2h.q rd, rs

Description

Converts the float inputs to float16 (half-float) and packs them in pairs in the output

register. The conversion process may naturally result in precision loss.

Notes

The conversion discards the most significant mantissa bits. This can affect NaN

encoding.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rd: Partial support (masking only)

rs: Full support (swizzle, abs(), neg() and constants)

Pseudocode

rd[0] = (ifloat32(rs[0])) | (ifloat32(rs[1]) << 16)

rd[1] = (ifloat32(rs[2])) | (ifloat32(rs[3]) << 16)

Used functions

uint16_t ifloat32(uint32_t fp32) {

 uint16_t exponent = (fp32 >> 23) & 0xFF;

 uint32_t mantissa = (fp32 & 0x7FFFFF);

 uint16_t sign = (fp32 >> 16) & 0x8000;

 if (!exponent)

 return sign; // Denormals rounded to zero

•

•

 if (exponent == 255) {

 // Inf/Nan case

 // Note: there's a bug around NaN conversion,

 // sometimes a NaN will be converted to Inf depending on the mantissa

 // (ie. 0x7ffff000 is a NaN but will be converted to +Inf)

 exponent = 31;

 mantissa &= 0x3FF;

 }

 else if (exponent <= 112) {

 // Too small to be represented (or zero or subnormal)

 mantissa = 0;

 exponent = 0;

 }

 else if (exponent >= 143) {

 // Too big to be represented (map to inf)

 mantissa = 0;

 exponent = 31;

 }

 else {

 // Convert with mantissa precision loss

 exponent -= 127 - 15;

 mantissa >>= 13;

 }

 return sign | (exponent << 10) | mantissa;

}

Unpack short to integervs2i.s

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 1 1 1 0 1 1 0 0rs rd

Syntax

vs2i.s rd, rs

Description

Converts the input packed shorts into full 32 bit integers in the output register. The input

is placed on the most significant bits of the output integer, while the least significant bits

are filled with zeros.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 3 cycles

Allowed prefixes

rd: Partial support (masking only)

rs: Not supported

Pseudocode

rd[0] = (rs[0]) << 16

rd[1] = (rs[0] >> 16) << 16

•

•

Unpack short to integervs2i.p

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 1 1 1 0 1 1 0 1rs rd

Syntax

vs2i.p rd, rs

Description

Converts the input packed shorts into full 32 bit integers in the output register. The input

is placed on the most significant bits of the output integer, while the least significant bits

are filled with zeros.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 3 cycles

Allowed prefixes

rd: Partial support (masking only)

rs: Not supported

Pseudocode

rd[0] = (rs[0]) << 16

rd[1] = (rs[0] >> 16) << 16

rd[2] = (rs[1]) << 16

rd[3] = (rs[1] >> 16) << 16

•

•

Unpack short to unsigned integervus2i.s

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 0rs rd

Syntax

vus2i.s rd, rs

Description

Converts the input packed shorts into full 32 bit integers in the output register. The input

is placed on the most significant bits of the output integer, while the least significant bits

are filled with zeros.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 3 cycles

Allowed prefixes

rd: Partial support (masking only)

rs: Not supported

Pseudocode

rd[0] = ((rs[0]) << 15) & 0x7FFFFFFF

rd[1] = ((rs[0] >> 16) << 15) & 0x7FFFFFFF

•

•

Unpack short to unsigned integervus2i.p

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 1rs rd

Syntax

vus2i.p rd, rs

Description

Converts the input packed shorts into full 32 bit integers in the output register. The input

is placed on the most significant bits of the output integer, while the least significant bits

are filled with zeros.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 3 cycles

Allowed prefixes

rd: Partial support (masking only)

rs: Not supported

Pseudocode

rd[0] = ((rs[0]) << 15) & 0x7FFFFFFF

rd[1] = ((rs[0] >> 16) << 15) & 0x7FFFFFFF

rd[2] = ((rs[1]) << 15) & 0x7FFFFFFF

rd[3] = ((rs[1] >> 16) << 15) & 0x7FFFFFFF

•

•

Unpack char to integervc2i.s

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 1 1 1 0 0 1 0 0rs rd

Syntax

vc2i.s rd, rs

Description

Converts the input packed chars into full 32 bit integers in the output register. The input

is placed on the most significant bits of the output integer, while the least significant bits

are filled with zeros.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 3 cycles

Allowed prefixes

rd: Partial support (masking only)

rs: Not supported

Pseudocode

rd[0] = (rs[0]) << 24

rd[1] = (rs[0] >> 8) << 24

rd[2] = (rs[0] >> 16) << 24

rd[3] = (rs[0] >> 24) << 24

•

•

Unpack char to unsigned integervuc2ifs.s

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0rs rd

Syntax

vuc2ifs.s rd, rs

Description

Converts the input packed chars into full 32 bit integers in the output register. The input

is placed on the most significant bits of the output integer, while the least significant bits

are filled with zeros XXXXXs.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 3 cycles

Allowed prefixes

rd: Partial support (masking only)

rs: Not supported

Pseudocode

rd[0] = (((rs[0]) & 0xFF) << 23) | (((rs[0]) & 0xFF) << 15) | (((rs[0]) & 0xFF) << 7)

| (((rs[0]) & 0xFF) >> 1)

rd[1] = (((rs[0] >> 8) & 0xFF) << 23) | (((rs[0] >> 8) & 0xFF) << 15) | (((rs[0] >> 8)

& 0xFF) << 7) | (((rs[0] >> 8) & 0xFF) >> 1)

rd[2] = (((rs[0] >> 16) & 0xFF) << 23) | (((rs[0] >> 16) & 0xFF) << 15) | (((rs[0] >>

16) & 0xFF) << 7) | (((rs[0] >> 16) & 0xFF) >> 1)

rd[3] = (((rs[0] >> 24) & 0xFF) << 23) | (((rs[0] >> 24) & 0xFF) << 15) | (((rs[0] >>

24) & 0xFF) << 7) | (((rs[0] >> 24) & 0xFF) >> 1)

•

•

Unpack float16 to floatvh2f.s

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 0 0rs rd

Syntax

vh2f.s rd, rs

Description

Converts the input packed float16 into full 32 bit floating point numbers.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rd: Full support (masking and saturation)

rs: Not supported

Pseudocode

rd[0] = ifloat16(rs[0])

rd[1] = ifloat16(rs[0] >> 16)

Used functions

uint32_t ifloat16(uint16_t fp16) {

 // Format is S.EEEEE.MMMMMMMMMM

 uint32_t exponent = (fp16 >> 10) & 0x1F;

 uint32_t mantissa = (fp16 & 0x3FF);

 uint32_t sign = (fp16 & 0x8000) << 16;

 if (!exponent)

 return sign; // Denormals rounded to zero

 if (exponent == 31) { // NaN/Inf

 exponent = 255;

 }

 else {

•

•

 mantissa <<= 13;

 exponent += 127 - 15;

 }

 // Direct conversion, no mantissa/exponent conversion

 return sign | (exponent << 23) | mantissa;

}

Unpack float16 to floatvh2f.p

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 0 1rs rd

Syntax

vh2f.p rd, rs

Description

Converts the input packed float16 into full 32 bit floating point numbers.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rd: Full support (masking and saturation)

rs: Not supported

Pseudocode

rd[0] = ifloat16(rs[0])

rd[1] = ifloat16(rs[0] >> 16)

rd[2] = ifloat16(rs[1])

rd[3] = ifloat16(rs[1] >> 16)

Used functions

uint32_t ifloat16(uint16_t fp16) {

 // Format is S.EEEEE.MMMMMMMMMM

 uint32_t exponent = (fp16 >> 10) & 0x1F;

 uint32_t mantissa = (fp16 & 0x3FF);

 uint32_t sign = (fp16 & 0x8000) << 16;

 if (!exponent)

 return sign; // Denormals rounded to zero

 if (exponent == 31) { // NaN/Inf

 exponent = 255;

•

•

 }

 else {

 mantissa <<= 13;

 exponent += 127 - 15;

 }

 // Direct conversion, no mantissa/exponent conversion

 return sign | (exponent << 23) | mantissa;

}

ABGR4444 color conversionvt4444.q

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 1 0 1 1 0 0 1 1 1rs rd

Syntax

vt4444.q rd, rs

Description

Converts four ABGR8888 color points to ABGR4444. The output 16 bit values are

packed into a vector register pair.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 3 cycles

Allowed prefixes

rs: Partial support (swizzle only)

rd: Not supported

Pseudocode

rd[0] = ((rs[0] >> 4) & 0x0000000F) | ((rs[0] >> 8) & 0x000000F0) | ((rs[0] >> 12) &

0x00000F00) | ((rs[0] >> 16) & 0x0000F000) | ((rs[1] << 12) & 0x000F0000) | ((rs[1] <<

8) & 0x00F00000) | ((rs[1] << 4) & 0x0F000000) | ((rs[1]) & 0xF0000000)

rd[1] = ((rs[2] >> 4) & 0x0000000F) | ((rs[2] >> 8) & 0x000000F0) | ((rs[2] >> 12) &

0x00000F00) | ((rs[2] >> 16) & 0x0000F000) | ((rs[3] << 12) & 0x000F0000) | ((rs[3] <<

8) & 0x00F00000) | ((rs[3] << 4) & 0x0F000000) | ((rs[3]) & 0xF0000000)

•

•

ABGR1555 color conversionvt5551.q

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 1 0 1 1 0 1 0 1 1rs rd

Syntax

vt5551.q rd, rs

Description

Converts four ABGR8888 color points to ABGR1555. The output 16 bit values are

packed into a vector register pair.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 3 cycles

Allowed prefixes

rs: Partial support (swizzle only)

rd: Not supported

Pseudocode

rd[0] = ((rs[0] >> 3) & 0x0000001F) | ((rs[0] >> 6) & 0x000003E0) | ((rs[0] >> 9) &

0x00007C00) | ((rs[0] >> 16) & 0x00008000) | ((rs[1] << 13) & 0x001F0000) | ((rs[1] <<

10) & 0x03E00000) | ((rs[1] << 7) & 0x7C000000) | ((rs[1]) & 0x80000000)

rd[1] = ((rs[2] >> 3) & 0x0000001F) | ((rs[2] >> 6) & 0x000003E0) | ((rs[2] >> 9) &

0x00007C00) | ((rs[2] >> 16) & 0x00008000) | ((rs[3] << 13) & 0x001F0000) | ((rs[3] <<

10) & 0x03E00000) | ((rs[3] << 7) & 0x7C000000) | ((rs[3]) & 0x80000000)

•

•

BGR565 color conversionvt5650.q

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 1 0 1 1 0 1 1 1 1rs rd

Syntax

vt5650.q rd, rs

Description

Converts four ABGR8888 color points to BGR565. The output 16 bit values are packed

into a vector register pair.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 3 cycles

Allowed prefixes

rs: Partial support (swizzle only)

rd: Not supported

Pseudocode

rd[0] = ((rs[0] >> 3) & 0x0000001F) | ((rs[0] >> 5) & 0x000007E0) | ((rs[0] >> 8) &

0x0000F800) | ((rs[1] << 13) & 0x001F0000) | ((rs[1] << 11) & 0x07E00000) | ((rs[1] <<

8) & 0xF8000000)

rd[1] = ((rs[2] >> 3) & 0x0000001F) | ((rs[2] >> 5) & 0x000007E0) | ((rs[2] >> 8) &

0x0000F800) | ((rs[3] << 13) & 0x001F0000) | ((rs[3] << 11) & 0x07E00000) | ((rs[3] <<

8) & 0xF8000000)

•

•

Load constant integer valueviim.s

012345678910111213141516171819202122232425262728293031

1 1 0 1 1 1 1 1 0 rd imval

Syntax

viim.s rd, imm16

Description

Loads a signed 16 bit immediate value (converted to floating point) in a register

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rd: Full support (masking and saturation)

Pseudocode

rd[0] = (float)(int16_t)(imval)

•

Load constant float valuevfim.s

012345678910111213141516171819202122232425262728293031

1 1 0 1 1 1 1 1 1 rd imval

Syntax

vfim.s rd, imm16

Description

Loads a float16 immediate value in a register

Instruction performance

Throughput: 1 cycles/instruction

Latency: 5 cycles

Allowed prefixes

rd: Full support (masking and saturation)

Pseudocode

rd[0] = ifloat16(imval)

Used functions

uint32_t ifloat16(uint16_t fp16) {

 // Format is S.EEEEE.MMMMMMMMMM

 uint32_t exponent = (fp16 >> 10) & 0x1F;

 uint32_t mantissa = (fp16 & 0x3FF);

 uint32_t sign = (fp16 & 0x8000) << 16;

 if (!exponent)

 return sign; // Denormals rounded to zero

 if (exponent == 31) { // NaN/Inf

 exponent = 255;

 }

 else {

 mantissa <<= 13;

 exponent += 127 - 15;

•

 }

 // Direct conversion, no mantissa/exponent conversion

 return sign | (exponent << 23) | mantissa;

}

Load special constantvcst.s

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0imval rd

Syntax

vcst.s rd, imm5

Description

Loads a predefined indexed floating point constant specified by the immediate field

Instruction performance

Throughput: 1 cycles/instruction

Latency: 3 cycles

Allowed prefixes

rd: Full support (masking and saturation)

Pseudocode

rd[0] = fpcst(imval)

Used functions

uint32_t fpcst(uint8_t cnum) {

 const uint32_t cntlist[] = {

 0x7f7fffff, // VFPU_HUGE [3.40282346e+38] (max exp & mantissa)

 0x3fb504f3, // SQRT(2) [1.41421353e+00]

 0x3f3504f3, // SQRT(1/2) [7.07106769e-01]

 0x3f906ebb, // 2/SQRT(PI) [1.12837922e+00]

 0x3f22f983, // 2/PI [6.36619746e-01]

 0x3ea2f983, // 1/PI [3.18309873e-01]

 0x3f490fdb, // PI/4 [7.85398185e-01]

 0x3fc90fdb, // PI/2 [1.57079637e+00]

 0x40490fdb, // PI [3.14159274e+00]

 0x402df854, // e [2.71828174e+00]

 0x3fb8aa3b, // LOG2(e) [1.44269502e+00]

 0x3ede5bd9, // LOG10(e) [4.34294492e-01]

 0x3f317218, // LOGe(2) [6.93147182e-01]

•

 0x40135d8e, // LOGe(10) [2.30258512e+00]

 0x40c90fdb, // 2PI [6.28318548e+00]

 0x3f060a92, // PI/6 [5.23598790e-01]

 0x3e9a209b, // LOG10(2) [3.01030009e-01]

 0x40549a78, // LOG2(10) [3.32192802e+00]

 0x3f5db3d7, // SQRT(3)/2 [8.66025388e-01]

 };

 return cntlist[cnum - 1];

}

Load special constantvcst.p

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1imval rd

Syntax

vcst.p rd, imm5

Description

Loads a predefined indexed floating point constant specified by the immediate field

Instruction performance

Throughput: 1 cycles/instruction

Latency: 3 cycles

Allowed prefixes

rd: Full support (masking and saturation)

Pseudocode

rd[0] = fpcst(imval)

rd[1] = fpcst(imval)

Used functions

uint32_t fpcst(uint8_t cnum) {

 const uint32_t cntlist[] = {

 0x7f7fffff, // VFPU_HUGE [3.40282346e+38] (max exp & mantissa)

 0x3fb504f3, // SQRT(2) [1.41421353e+00]

 0x3f3504f3, // SQRT(1/2) [7.07106769e-01]

 0x3f906ebb, // 2/SQRT(PI) [1.12837922e+00]

 0x3f22f983, // 2/PI [6.36619746e-01]

 0x3ea2f983, // 1/PI [3.18309873e-01]

 0x3f490fdb, // PI/4 [7.85398185e-01]

 0x3fc90fdb, // PI/2 [1.57079637e+00]

 0x40490fdb, // PI [3.14159274e+00]

 0x402df854, // e [2.71828174e+00]

 0x3fb8aa3b, // LOG2(e) [1.44269502e+00]

 0x3ede5bd9, // LOG10(e) [4.34294492e-01]

•

 0x3f317218, // LOGe(2) [6.93147182e-01]

 0x40135d8e, // LOGe(10) [2.30258512e+00]

 0x40c90fdb, // 2PI [6.28318548e+00]

 0x3f060a92, // PI/6 [5.23598790e-01]

 0x3e9a209b, // LOG10(2) [3.01030009e-01]

 0x40549a78, // LOG2(10) [3.32192802e+00]

 0x3f5db3d7, // SQRT(3)/2 [8.66025388e-01]

 };

 return cntlist[cnum - 1];

}

Load special constantvcst.t

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0imval rd

Syntax

vcst.t rd, imm5

Description

Loads a predefined indexed floating point constant specified by the immediate field

Instruction performance

Throughput: 1 cycles/instruction

Latency: 3 cycles

Allowed prefixes

rd: Full support (masking and saturation)

Pseudocode

rd[0] = fpcst(imval)

rd[1] = fpcst(imval)

rd[2] = fpcst(imval)

Used functions

uint32_t fpcst(uint8_t cnum) {

 const uint32_t cntlist[] = {

 0x7f7fffff, // VFPU_HUGE [3.40282346e+38] (max exp & mantissa)

 0x3fb504f3, // SQRT(2) [1.41421353e+00]

 0x3f3504f3, // SQRT(1/2) [7.07106769e-01]

 0x3f906ebb, // 2/SQRT(PI) [1.12837922e+00]

 0x3f22f983, // 2/PI [6.36619746e-01]

 0x3ea2f983, // 1/PI [3.18309873e-01]

 0x3f490fdb, // PI/4 [7.85398185e-01]

 0x3fc90fdb, // PI/2 [1.57079637e+00]

 0x40490fdb, // PI [3.14159274e+00]

 0x402df854, // e [2.71828174e+00]

 0x3fb8aa3b, // LOG2(e) [1.44269502e+00]

•

 0x3ede5bd9, // LOG10(e) [4.34294492e-01]

 0x3f317218, // LOGe(2) [6.93147182e-01]

 0x40135d8e, // LOGe(10) [2.30258512e+00]

 0x40c90fdb, // 2PI [6.28318548e+00]

 0x3f060a92, // PI/6 [5.23598790e-01]

 0x3e9a209b, // LOG10(2) [3.01030009e-01]

 0x40549a78, // LOG2(10) [3.32192802e+00]

 0x3f5db3d7, // SQRT(3)/2 [8.66025388e-01]

 };

 return cntlist[cnum - 1];

}

Load special constantvcst.q

012345678910111213141516171819202122232425262728293031

1 1 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1imval rd

Syntax

vcst.q rd, imm5

Description

Loads a predefined indexed floating point constant specified by the immediate field

Instruction performance

Throughput: 1 cycles/instruction

Latency: 3 cycles

Allowed prefixes

rd: Full support (masking and saturation)

Pseudocode

rd[0] = fpcst(imval)

rd[1] = fpcst(imval)

rd[2] = fpcst(imval)

rd[3] = fpcst(imval)

Used functions

uint32_t fpcst(uint8_t cnum) {

 const uint32_t cntlist[] = {

 0x7f7fffff, // VFPU_HUGE [3.40282346e+38] (max exp & mantissa)

 0x3fb504f3, // SQRT(2) [1.41421353e+00]

 0x3f3504f3, // SQRT(1/2) [7.07106769e-01]

 0x3f906ebb, // 2/SQRT(PI) [1.12837922e+00]

 0x3f22f983, // 2/PI [6.36619746e-01]

 0x3ea2f983, // 1/PI [3.18309873e-01]

 0x3f490fdb, // PI/4 [7.85398185e-01]

 0x3fc90fdb, // PI/2 [1.57079637e+00]

 0x40490fdb, // PI [3.14159274e+00]

 0x402df854, // e [2.71828174e+00]

•

 0x3fb8aa3b, // LOG2(e) [1.44269502e+00]

 0x3ede5bd9, // LOG10(e) [4.34294492e-01]

 0x3f317218, // LOGe(2) [6.93147182e-01]

 0x40135d8e, // LOGe(10) [2.30258512e+00]

 0x40c90fdb, // 2PI [6.28318548e+00]

 0x3f060a92, // PI/6 [5.23598790e-01]

 0x3e9a209b, // LOG10(2) [3.01030009e-01]

 0x40549a78, // LOG2(10) [3.32192802e+00]

 0x3f5db3d7, // SQRT(3)/2 [8.66025388e-01]

 };

 return cntlist[cnum - 1];

}

Nop (no operation)vnop

012345678910111213141516171819202122232425262728293031

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Syntax

vnop

Description

Does nothing and wastes one VFPU cycle. Used to avoid pipeline hazards. This

instruction does consume prefixes.

Write buffer flushvflush

012345678910111213141516171819202122232425262728293031

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1

Syntax

vflush

Description

Waits until the write buffer has been flushed

Pipeline synchronizevsync

012345678910111213141516171819202122232425262728293031

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0

Syntax

vsync

Description

Waits until all operations in the VFPU pipeline have completed

Source prefixvpfxs

012345678910111213141516171819202122232425262728293031

1 1 0 1 1 1 0 0 imm24

Syntax

vpfxs imm24

Description

Sets the prefix operation code in the VFPU_PFXS ($128) register

Notes

Overrides any previous state of the VFPU_PFXS register.

Only the 20 lowest significant bits are set.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 1 cycles

Target prefixvpfxt

012345678910111213141516171819202122232425262728293031

1 1 0 1 1 1 0 1 imm24

Syntax

vpfxt imm24

Description

Sets the prefix operation code in the VFPU_PFXT ($129) register

Notes

Overrides any previous state of the VFPU_PFXT register.

Only the 20 lowest significant bits are set.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 1 cycles

Destination prefixvpfxd

012345678910111213141516171819202122232425262728293031

1 1 0 1 1 1 1 0 imm24

Syntax

vpfxd imm24

Description

Sets the prefix operation code in the VFPU_PFXD ($130) register

Notes

Overrides any previous state of the VFPU_PFXD register.

Only the 12 lowest significant bits are set.

Instruction performance

Throughput: 1 cycles/instruction

Latency: 1 cycles

Known VFPU bugs/errata

The VFPU has some known bugs or errata. Some of the bugs have been fixed in later

hardware revisions, but some others have been kept for compatibility reasons.

vhtfm output register written incorrectly

Instructions vhtfm2.p and vhtfm3.t feature a bug that affects all PSP models. This bug is

triggered whenever the output register rd is 64 or higher, which is incidentally the reason

why this bug doesn't affect vhtfm4.q.

Registers below 64 are left and top aligned registers, that is, registers in the form of RX0Y

or CXY0. However registers above 64 are in the form RX1Y, RX2Y, CXY1 or CXY2, that is, they

are shifted by one or two columns or rows (not at the edge of the matrix). Whenever

these registers are used the instruction makes a mistake writing the register and shifts

the row or column by an incorrect number of elements, causing an unvoluntary

corruption in the output value.

This writing error seems to be deterministic. For vhtfm2.p the result is written in one

element shifted to the left/up. For vhtfm3.t the shift happens to the right/down, wrapping

around the edges of the matrix. You can find the tests and examples in psp-tests/manual/

vfpu-bugs.c

ulv.q (lvl.q / lvr.q) register corruption

In PSP 1000 devices, the lvl.q and lvr.q instructions (which are usually expanded from

ulv.q macros) present a bug (fixed in 2000 and later models). When any of these

instructions is executed, the CPU corrupts the FPU register bank (that is, Coprocessor

1, which is unrelated to the VFPU).

The bug causes an unexpected write to an FPU register whenever the instruction is

executed. The value being written is apparently whatever value was left in the

coprocessor bus (which in some incidental cases causing no corruption if the previous

and new values are identical). The bus seems to be used by mfc1/mtc1 and some other

COP1 instructions.

The corrupted register is deterministic, its value is derived from the VFPU destination

register. The lowest 5 bits of the register indicate the FPU register that will be corrupted

(ie. C000 corrupts $f0, C010 corrupts $f1 and so on). As a workaround in inline VFPU

assembly, it is possible to designate the register as clobbered, which will make gcc

assume it was corrupted/written, thus using other registers or saving and restoring it.

References

Most of the information comes from various sources that are either incomplete or in a

form that is not easy to read as documentation. Some information comes from talks and

chats with members of the PSP community or sources thare are now unfortunately dead.

Some sources contain errors, incorrect or imprecise information. No source should be

taken without question and every assertion validated.

yet another PlayStationPortable Documentation

PPSSPP emulator

PS2 dev forums

•

•

•

http://hitmen.c02.at/files/yapspd/psp_doc/frames.html
https://github.com/hrydgard/ppsspp
https://forums.ps2dev.org/viewforum.php?f=14

	PSP VFPU instruction set documentation
	Introduction
	MIPS allegrex CPU
	VFPU unit
	Register set
	Register hazards
	Floating point format

	Instruction execution
	Prefix operations

	Allegrex Instructions
	Bit manipulation instructions
	Arithmetic-Logical instructions

	bvf
	VFPU branch on false
	Syntax
	Description
	Instruction performance

	bvfl
	VFPU likely branch on false
	Syntax
	Description
	Instruction performance

	bvt
	VFPU branch on true
	Syntax
	Description
	Instruction performance

	bvtl
	VFPU likely branch on true
	Syntax
	Description
	Instruction performance

	mtvc
	Move GPR to VFPU control register
	Syntax
	Description

	mfvc
	Move VFPU control register to GPR
	Syntax
	Description
	Hazards

	vmtvc
	Move vector register to VFPU control register
	Syntax
	Description

	vmfvc
	Move VFPU control register to vector register
	Syntax
	Description
	Hazards

	lv.s
	Load VFPU element
	Syntax
	Description
	Allowed prefixes

	lv.q
	Load VFPU quad element
	Syntax
	Description
	Allowed prefixes

	lvl.q
	Load left VFPU quad element
	Syntax
	Description
	Bugs
	Allowed prefixes

	lvr.q
	Load right VFPU quad element
	Syntax
	Description
	Bugs
	Allowed prefixes

	sv.s
	Store VFPU element
	Syntax
	Description
	Allowed prefixes

	sv.q
	Store VFPU quad element
	Syntax
	Description
	Allowed prefixes

	svl.q
	Store left VFPU quad element
	Syntax
	Description
	Allowed prefixes

	svr.q
	Store right VFPU quad element
	Syntax
	Description
	Allowed prefixes

	vadd.s
	Add elements
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vadd.p
	Add elements
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vadd.t
	Add elements
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vadd.q
	Add elements
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vsub.s
	Subtract elements
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vsub.p
	Subtract elements
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vsub.t
	Subtract elements
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vsub.q
	Subtract elements
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vmul.s
	Multiply elements
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vmul.p
	Multiply elements
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vmul.t
	Multiply elements
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vmul.q
	Multiply elements
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vdiv.s
	Divide elements
	Syntax
	Description
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vdiv.p
	Divide elements
	Syntax
	Description
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vdiv.t
	Divide elements
	Syntax
	Description
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vdiv.q
	Divide elements
	Syntax
	Description
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vmin.s
	Select smallest elements
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vmin.p
	Select smallest elements
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vmin.t
	Select smallest elements
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vmin.q
	Select smallest elements
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vmax.s
	Select biggest elements
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vmax.p
	Select biggest elements
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vmax.t
	Select biggest elements
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vmax.q
	Select biggest elements
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vscmp.s
	Compare and set elements
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vscmp.p
	Compare and set elements
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vscmp.t
	Compare and set elements
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vscmp.q
	Compare and set elements
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vsge.s
	Compare greater or equal and set elements
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vsge.p
	Compare greater or equal and set elements
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vsge.t
	Compare greater or equal and set elements
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vsge.q
	Compare greater or equal and set elements
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vslt.s
	Compare less-than and set elements
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vslt.p
	Compare less-than and set elements
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vslt.t
	Compare less-than and set elements
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vslt.q
	Compare less-than and set elements
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vcrs.t
	Partial vector cross product
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vcrsp.t
	Vector cross product
	Syntax
	Description
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vqmul.q
	Quaternion multiplication
	Syntax
	Description
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vsbn.s
	Change exponent scale
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vscl.p
	Vector scalar scale
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vscl.t
	Vector scalar scale
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vscl.q
	Vector scalar scale
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vdot.p
	Vector dot product
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vdot.t
	Vector dot product
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vdot.q
	Vector dot product
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vdet.p
	2x2 matrix determinant
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vhdp.p
	Homogeneous dot product
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vhdp.t
	Homogeneous dot product
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vhdp.q
	Homogeneous dot product
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vmov.s
	Vector copy
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vmov.p
	Vector copy
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vmov.t
	Vector copy
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vmov.q
	Vector copy
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vabs.s
	Absolute value
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vabs.p
	Absolute value
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vabs.t
	Absolute value
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vabs.q
	Absolute value
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vneg.s
	Floating point negation
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vneg.p
	Floating point negation
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vneg.t
	Floating point negation
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vneg.q
	Floating point negation
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vsat0.s
	Saturate float to 0..1
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vsat0.p
	Saturate float to 0..1
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vsat0.t
	Saturate float to 0..1
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vsat0.q
	Saturate float to 0..1
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vsat1.s
	Saturate float to -1..1
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vsat1.p
	Saturate float to -1..1
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vsat1.t
	Saturate float to -1..1
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vsat1.q
	Saturate float to -1..1
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vrcp.s
	Reciprocate elements
	Syntax
	Description
	Accuracy
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vrcp.p
	Reciprocate elements
	Syntax
	Description
	Accuracy
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vrcp.t
	Reciprocate elements
	Syntax
	Description
	Accuracy
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vrcp.q
	Reciprocate elements
	Syntax
	Description
	Accuracy
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vrsq.s
	Reciprocal square root
	Syntax
	Description
	Accuracy
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vrsq.p
	Reciprocal square root
	Syntax
	Description
	Accuracy
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vrsq.t
	Reciprocal square root
	Syntax
	Description
	Accuracy
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vrsq.q
	Reciprocal square root
	Syntax
	Description
	Accuracy
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vsin.s
	Sine function
	Syntax
	Description
	Accuracy
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vsin.p
	Sine function
	Syntax
	Description
	Accuracy
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vsin.t
	Sine function
	Syntax
	Description
	Accuracy
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vsin.q
	Sine function
	Syntax
	Description
	Accuracy
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vcos.s
	Cosine function
	Syntax
	Description
	Accuracy
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vcos.p
	Cosine function
	Syntax
	Description
	Accuracy
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vcos.t
	Cosine function
	Syntax
	Description
	Accuracy
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vcos.q
	Cosine function
	Syntax
	Description
	Accuracy
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vexp2.s
	Base-2 exponentiation
	Syntax
	Description
	Accuracy
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vexp2.p
	Base-2 exponentiation
	Syntax
	Description
	Accuracy
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vexp2.t
	Base-2 exponentiation
	Syntax
	Description
	Accuracy
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vexp2.q
	Base-2 exponentiation
	Syntax
	Description
	Accuracy
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vlog2.s
	Base-2 logarithm
	Syntax
	Description
	Accuracy
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vlog2.p
	Base-2 logarithm
	Syntax
	Description
	Accuracy
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vlog2.t
	Base-2 logarithm
	Syntax
	Description
	Accuracy
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vlog2.q
	Base-2 logarithm
	Syntax
	Description
	Accuracy
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vlgb.s
	LogB calculation
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vsbz.s
	Reset exponent scale
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vwbn.s
	Floating point modulus
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode
	Used functions

	vsqrt.s
	Square root
	Syntax
	Description
	Accuracy
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vsqrt.p
	Square root
	Syntax
	Description
	Accuracy
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vsqrt.t
	Square root
	Syntax
	Description
	Accuracy
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vsqrt.q
	Square root
	Syntax
	Description
	Accuracy
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vasin.s
	Arc sine function
	Syntax
	Description
	Accuracy
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vasin.p
	Arc sine function
	Syntax
	Description
	Accuracy
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vasin.t
	Arc sine function
	Syntax
	Description
	Accuracy
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vasin.q
	Arc sine function
	Syntax
	Description
	Accuracy
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vnrcp.s
	Negative reciprocal
	Syntax
	Description
	Accuracy
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vnrcp.p
	Negative reciprocal
	Syntax
	Description
	Accuracy
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vnrcp.t
	Negative reciprocal
	Syntax
	Description
	Accuracy
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vnrcp.q
	Negative reciprocal
	Syntax
	Description
	Accuracy
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vnsin.s
	Negative sine function
	Syntax
	Description
	Accuracy
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vnsin.p
	Negative sine function
	Syntax
	Description
	Accuracy
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vnsin.t
	Negative sine function
	Syntax
	Description
	Accuracy
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vnsin.q
	Negative sine function
	Syntax
	Description
	Accuracy
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vrexp2.s
	Base-2 negative exponentiation
	Syntax
	Description
	Accuracy
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vrexp2.p
	Base-2 negative exponentiation
	Syntax
	Description
	Accuracy
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vrexp2.t
	Base-2 negative exponentiation
	Syntax
	Description
	Accuracy
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vrexp2.q
	Base-2 negative exponentiation
	Syntax
	Description
	Accuracy
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vsrt1.q
	Element min-sort pass #1
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vsrt2.q
	Element min-sort pass #2
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vsrt3.q
	Element max-sort pass #1
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vsrt4.q
	Element max-sort pass #2
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vbfy1.p
	Butterfly function #1
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vbfy1.q
	Butterfly function #1
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vbfy2.q
	Butterfly function #2
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vsgn.s
	Sign function
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vsgn.p
	Sign function
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vsgn.t
	Sign function
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vsgn.q
	Sign function
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vocp.s
	One complement function
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vocp.p
	One complement function
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vocp.t
	One complement function
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vocp.q
	One complement function
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vi2f.s
	Integer to float with scaling
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vi2f.p
	Integer to float with scaling
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vi2f.t
	Integer to float with scaling
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vi2f.q
	Integer to float with scaling
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vf2in.s
	Float to integer round-to-nearest with scaling
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vf2in.p
	Float to integer round-to-nearest with scaling
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vf2in.t
	Float to integer round-to-nearest with scaling
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vf2in.q
	Float to integer round-to-nearest with scaling
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vf2iz.s
	Float to integer truncation with scaling
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vf2iz.p
	Float to integer truncation with scaling
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vf2iz.t
	Float to integer truncation with scaling
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vf2iz.q
	Float to integer truncation with scaling
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vf2iu.s
	Float to integer round-up with scaling
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vf2iu.p
	Float to integer round-up with scaling
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vf2iu.t
	Float to integer round-up with scaling
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vf2iu.q
	Float to integer round-up with scaling
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vf2id.s
	Float to integer round-down with scaling
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vf2id.p
	Float to integer round-down with scaling
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vf2id.t
	Float to integer round-down with scaling
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vf2id.q
	Float to integer round-down with scaling
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vrot.p
	Rotation matrix row calculation
	Syntax
	Description
	Accuracy
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode
	Used functions

	vrot.t
	Rotation matrix row calculation
	Syntax
	Description
	Accuracy
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode
	Used functions

	vrot.q
	Rotation matrix row calculation
	Syntax
	Description
	Accuracy
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode
	Used functions

	vsocp.s
	One complement with saturation
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vsocp.p
	One complement with saturation
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vavg.p
	Calculate element average
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vavg.t
	Calculate element average
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vavg.q
	Calculate element average
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vfad.p
	Calculate element sum
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vfad.t
	Calculate element sum
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vfad.q
	Calculate element sum
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vcmp.s
	Compare vector elements
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode
	Used functions

	vcmp.p
	Compare vector elements
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode
	Used functions

	vcmp.t
	Compare vector elements
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode
	Used functions

	vcmp.q
	Compare vector elements
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode
	Used functions

	vidt.p
	Identity matrix row/col initialize
	Syntax
	Description
	Instruction performance
	Allowed prefixes

	vidt.q
	Identity matrix row/col initialize
	Syntax
	Description
	Instruction performance
	Allowed prefixes

	vzero.s
	Clear vector to zero
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vzero.p
	Clear vector to zero
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vzero.t
	Clear vector to zero
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vzero.q
	Clear vector to zero
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vone.s
	Clear vector to one
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vone.p
	Clear vector to one
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vone.t
	Clear vector to one
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vone.q
	Clear vector to one
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vrnds.s
	Random seed
	Syntax
	Description
	Allowed prefixes

	vrndi.s
	Random integer
	Syntax
	Description
	Instruction performance
	Allowed prefixes

	vrndi.p
	Random integer
	Syntax
	Description
	Instruction performance
	Allowed prefixes

	vrndi.t
	Random integer
	Syntax
	Description
	Instruction performance
	Allowed prefixes

	vrndi.q
	Random integer
	Syntax
	Description
	Instruction performance
	Allowed prefixes

	vrndf1.s
	Random float in [1..2] range
	Syntax
	Description
	Instruction performance
	Allowed prefixes

	vrndf1.p
	Random float in [1..2] range
	Syntax
	Description
	Instruction performance
	Allowed prefixes

	vrndf1.t
	Random float in [1..2] range
	Syntax
	Description
	Instruction performance
	Allowed prefixes

	vrndf1.q
	Random float in [1..2] range
	Syntax
	Description
	Instruction performance
	Allowed prefixes

	vrndf2.s
	Random float in [2..4] range
	Syntax
	Description
	Instruction performance
	Allowed prefixes

	vrndf2.p
	Random float in [2..4] range
	Syntax
	Description
	Instruction performance
	Allowed prefixes

	vrndf2.t
	Random float in [2..4] range
	Syntax
	Description
	Instruction performance
	Allowed prefixes

	vrndf2.q
	Random float in [2..4] range
	Syntax
	Description
	Instruction performance
	Allowed prefixes

	vmmul.p
	Matrix by matrix multiplication
	Syntax
	Description
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vmmul.t
	Matrix by matrix multiplication
	Syntax
	Description
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vmmul.q
	Matrix by matrix multiplication
	Syntax
	Description
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vmscl.p
	Matrix scale by single factor
	Syntax
	Description
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vmscl.t
	Matrix scale by single factor
	Syntax
	Description
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vmscl.q
	Matrix scale by single factor
	Syntax
	Description
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vmmov.p
	Copy matrix
	Syntax
	Description
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vmmov.t
	Copy matrix
	Syntax
	Description
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vmmov.q
	Copy matrix
	Syntax
	Description
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vmidt.p
	Set matrix to identity
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vmidt.t
	Set matrix to identity
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vmidt.q
	Set matrix to identity
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vmzero.p
	Clear matrix to zero
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vmzero.t
	Clear matrix to zero
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vmzero.q
	Clear matrix to zero
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vmone.p
	Clear matrix to one
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vmone.t
	Clear matrix to one
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vmone.q
	Clear matrix to one
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vtfm2.p
	Vector by matrix transform
	Syntax
	Description
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vtfm3.t
	Vector by matrix transform
	Syntax
	Description
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vtfm4.q
	Vector by matrix transform
	Syntax
	Description
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vhtfm2.p
	Vector by matrix homogeneous transform
	Syntax
	Description
	Bugs
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vhtfm3.t
	Vector by matrix homogeneous transform
	Syntax
	Description
	Bugs
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vhtfm4.q
	Vector by matrix homogeneous transform
	Syntax
	Description
	Instruction performance
	Register overlap compatibility
	Allowed prefixes
	Pseudocode

	vcmovf.s
	Conditional move (false)
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vcmovf.t
	Conditional move (false)
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vcmovf.p
	Conditional move (false)
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vcmovf.q
	Conditional move (false)
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vcmovt.s
	Conditional move (true)
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vcmovt.t
	Conditional move (true)
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vcmovt.p
	Conditional move (true)
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vcmovt.q
	Conditional move (true)
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vi2uc.q
	Pack integer to unsigned char
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vi2c.q
	Pack integer to char
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vi2us.p
	Pack integer to unsigned short
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vi2us.q
	Pack integer to unsigned short
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vi2s.p
	Pack integer to short
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vi2s.q
	Pack integer to short
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vf2h.p
	Pack float to float16
	Syntax
	Description
	Notes
	Instruction performance
	Allowed prefixes
	Pseudocode
	Used functions

	vf2h.q
	Pack float to float16
	Syntax
	Description
	Notes
	Instruction performance
	Allowed prefixes
	Pseudocode
	Used functions

	vs2i.s
	Unpack short to integer
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vs2i.p
	Unpack short to integer
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vus2i.s
	Unpack short to unsigned integer
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vus2i.p
	Unpack short to unsigned integer
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vc2i.s
	Unpack char to integer
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vuc2ifs.s
	Unpack char to unsigned integer
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vh2f.s
	Unpack float16 to float
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode
	Used functions

	vh2f.p
	Unpack float16 to float
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode
	Used functions

	vt4444.q
	ABGR4444 color conversion
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vt5551.q
	ABGR1555 color conversion
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vt5650.q
	BGR565 color conversion
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	viim.s
	Load constant integer value
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode

	vfim.s
	Load constant float value
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode
	Used functions

	vcst.s
	Load special constant
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode
	Used functions

	vcst.p
	Load special constant
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode
	Used functions

	vcst.t
	Load special constant
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode
	Used functions

	vcst.q
	Load special constant
	Syntax
	Description
	Instruction performance
	Allowed prefixes
	Pseudocode
	Used functions

	vnop
	Nop (no operation)
	Syntax
	Description

	vflush
	Write buffer flush
	Syntax
	Description

	vsync
	Pipeline synchronize
	Syntax
	Description

	vpfxs
	Source prefix
	Syntax
	Description
	Notes
	Instruction performance

	vpfxt
	Target prefix
	Syntax
	Description
	Notes
	Instruction performance

	vpfxd
	Destination prefix
	Syntax
	Description
	Notes
	Instruction performance

	Known VFPU bugs/errata
	vhtfm output register written incorrectly
	ulv.q (lvl.q / lvr.q) register corruption

	References

